日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.
【答案】分析:(1)根據題意,對n=4,n=5時數列中各項的情況逐一討論,利用反證法結合等差數列的性質進行論證,進而推廣到n≥4的所有情況.
(2)利用反證法結合等差數列的性質進行論證即可.
解答:解:(1)①當n=4時,a1,a2,a3,a4中不可能刪去首項或末項,否則等差數列中連續三項成等比數列,則推出d=0.
若刪去a2,則a32=a1•a4,即(a1+2d)2=a1•(a1+3d)化簡得a1+4d=0,得
若刪去a3,則a22=a1•a4,即(a1+d)2=a1•(a1+3d)化簡得a1-d=0,得
綜上,得
②當n=5時,a1,a2,a3,a4,a5中同樣不可能刪去a1,a2,a4,a5,否則出現連續三項.
若刪去a3,則a1•a5=a2•a4,即a1(a1+4d)=(a1+d)•(a1+3d)化簡得3d2=0,因為d≠0,所以a3不能刪去;
當n≥6時,不存在這樣的等差數列.事實上,在數列a1,a2,a3,…,an-2,an-1,an中,由于不能刪去首項或末項,
若刪去a2,則必有a1•an=a3•an-2,這與d≠0矛盾;
同樣若刪去an-1也有a1•an=a3•an-2,這與d≠0矛盾;
若刪去a3,,an-2中任意一個,則必有a1•an=a2•an-1,這與d≠0矛盾.(或者說:當n≥6時,無論刪去哪一項,剩余的項中必有連續的三項)
綜上所述,n=4.
(2)假設對于某個正整數n,存在一個公差為d的n項等差數列b1,b2,bn,其中bx+1,by+1,bz+1(0≤x<y<z≤n-1)為任意三項成等比數列,則b2y+1=bx+1•bz+1,即(b1+yd)2=(b1+xd)•(b1+zd),化簡得(y2-xz)d2=(x+z-2y)b1d(*)
由b1d≠0知,y2-xz與x+z-2y同時為0或同時不為0
當y2-xz與x+z-2y同時為0時,有x=y=z與題設矛盾.
故y2-xz與x+z-2y同時不為0,所以由(*)得
因為0≤x<y<z≤n-1,且x、y、z為整數,所以上式右邊為有理數,從而為有理數.
于是,對于任意的正整數n(n≥4),只要為無理數,相應的數列就是滿足題意要求的數列.
例如n項數列1,,,滿足要求.
點評:本題是一道探究性題目,考查了等差數列和等比數列的通項公式,以及學生的運算能力和推理論證能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求
a1d
的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列
(i)當n=4時,求
a1d
的數值;
(ii)求n的所有可能值.
(2)求證:存在一個各項及公差均不為零的n(n≥4)項等差數列,任意刪去其中的k項(1≤k≤n-3),都不能使剩下的項(按原來的順序)構成等比數列.

查看答案和解析>>

科目:高中數學 來源:江蘇 題型:解答題

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求
a1
d
的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>

科目:高中數學 來源:2013年江蘇省高考數學考試說明(典型題示例)(解析版) 題型:解答題

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列
(i)當n=4時,求的數值;
(ii)求n的所有可能值.
(2)求證:存在一個各項及公差均不為零的n(n≥4)項等差數列,任意刪去其中的k項(1≤k≤n-3),都不能使剩下的項(按原來的順序)構成等比數列.

查看答案和解析>>

科目:高中數學 來源:2008年江蘇省高考數學試卷(解析版) 題型:解答題

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91国内精品| 午夜大片在线观看 | 污网站在线浏览 | 国产成人精品国内自产拍免费看 | 国产午夜精品美女视频明星a级 | 999这里只有精品 | 久久99精品久久久久久秒播放器 | 精品国产一区二区三区粉芽 | 日本午夜网| 欧美日韩爱爱 | 日本一区二区精品视频 | 精品亚洲成a人片在线观看 99在线免费视频 | 日韩在线一区二区 | 久久9视频 | 黄视频网址 | 欧美午夜精品一区二区三区电影 | 一区二区三区自拍 | 日日操操 | 日本黄色免费观看 | 日本午夜在线 | 成人宗合网 | 超碰网址 | www久久| 欧美成人免费 | 91亚洲精品一区 | 亚洲精品一区二区三区蜜桃下载 | 欧美成人在线免费观看 | 免费福利小视频 | 美女国产网站 | 国产精品二区一区二区aⅴ污介绍 | 91视频网 | 成人午夜视频在线观看 | 91伊人| 精品久久久网站 | 成人av在线网 | 欧美啊v| 黑人巨大精品欧美一区二区免费 | 九九热在线免费视频 | 欧美大片在线免费观看 | 91在线精品一区二区 | 欧美日韩电影一区 |