【題目】設(shè)拋物線的焦點(diǎn)為
,準(zhǔn)線為
,
為過(guò)焦點(diǎn)
且垂直于
軸的拋物線
的弦,已知以
為直徑的圓經(jīng)過(guò)點(diǎn)
.
(1)求的值及該圓的方程;
(2)設(shè)為
上任意一點(diǎn),過(guò)點(diǎn)
作
的切線,切點(diǎn)為
,證明:
.
【答案】(1),圓的方程為:
.(2)答案見(jiàn)解析
【解析】
(1)根據(jù)題意,可知點(diǎn)的坐標(biāo)為
,即可求出
的值,即可求出該圓的方程;
(2)由題易知,直線的斜率存在且不為0,設(shè)
的方程為
,與拋物線
聯(lián)立方程組,根據(jù)
,求得
,化簡(jiǎn)解得
,進(jìn)而求得
點(diǎn)的坐標(biāo)為
,分別求出
,
,利用向量的數(shù)量積為0,即可證出
.
解:(1)易知點(diǎn)的坐標(biāo)為
,
所以,解得
.
又圓的圓心為,
所以圓的方程為.
(2)證明易知,直線的斜率存在且不為0,
設(shè)的方程為
,
代入的方程,得
.
令,得
,
所以,解得
.
將代入
的方程,得
,即
點(diǎn)的坐標(biāo)為
.
所以,
,
.
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若是
的極大值點(diǎn),求
的取值范圍;
(2)當(dāng),
時(shí),方程
(其中
)有唯一實(shí)數(shù)解,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為F,點(diǎn)
,過(guò)M的直線與橢圓E交于A,B兩點(diǎn),線段AB中點(diǎn)為C,設(shè)橢圓E在A,B兩點(diǎn)處的切線相交于點(diǎn)P,O為坐標(biāo)原點(diǎn).
(1)證明:O、C、P三點(diǎn)共線;
(2)已知是拋物線
的弦,所在直線過(guò)該拋物線的準(zhǔn)線與y軸的交點(diǎn),
是弦
在兩端點(diǎn)處的切線的交點(diǎn),小明同學(xué)猜想:
在定直線上.你認(rèn)為小明猜想合理嗎?若合理,請(qǐng)寫(xiě)出
所在直線方程;若不合理,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若
在
上有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,數(shù)列
中的每一項(xiàng)均在集合
中,且任意兩項(xiàng)不相等,又對(duì)于任意的整數(shù)
,均有
.例如
時(shí),數(shù)列
為
或
.
(1)當(dāng)時(shí),試求滿足條件的數(shù)列
的個(gè)數(shù);
(2)當(dāng),求所有滿足條件的數(shù)列
的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習(xí)慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由10位同學(xué)組成四個(gè)宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學(xué),有害垃圾與其他垃圾宣傳小組各有3位同學(xué).現(xiàn)從這10位同學(xué)中選派5人到某小區(qū)進(jìn)行宣傳活動(dòng),則每個(gè)宣傳小組至少選派1人的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意
,
與
中至少有一個(gè)不小于M,則記作
,那么下列命題正確的是( ).
A.若,則數(shù)列
各項(xiàng)均大于或等于M;
B.若,則
;
C.若,
,則
;
D.若,則
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,右焦點(diǎn)為
,左頂點(diǎn)為A,右頂點(diǎn)B在直線
上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線
于點(diǎn)
,當(dāng)點(diǎn)
運(yùn)動(dòng)時(shí),判斷以
為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com