(I)已知函數f(x)=rx-xr+(1-r)(x>0),其中r為有理數,且0<r<1.求f(x)的最小值;
(II)試用(I)的結果證明如下命題:
設a1≥0,a2≥0,b1,b2為正有理數,若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(III)請將(II)中的命題推廣到一般形式,并用數學歸納法證明你所推廣的命題。注:當α為正有理數時,有求道公式(xα)r=αxα-1
科目:高中數學 來源: 題型:
1 |
x |
1 |
4 |
1 |
2 |
f(b)-f(a) |
b-a |
f(b)-f(a) |
b-a |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2012年湖北省高考數學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com