【題目】利用簡單隨機抽樣從某小區抽取100戶居民進行月用電量調查,發現其用電量都在50到350度之間,頻率分布直方圖如圖所示.在這些用戶中,用電量落在區間[150,250]內的戶數為( )
A.46
B.48
C.50
D.52
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換得到曲線,設M(x,y)為
上任意一點,求
的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)討論函數的單調性;
(2)當時,若函數
的導函數
的圖象與
軸交于
,
兩點,其橫坐標分別為
,
,線段
的中點的橫坐標為
,且
,
恰為函數
的零點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(1)在給定直角坐標系內直接畫出f(x)的草圖(不用列表描點),并由圖象寫出函數 f(x)的單調減區間;
(2)當m為何值時f(x)+m=0有三個不同的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是y1 , y2萬元,它們與投入資金x萬元的關系分別為y1=m +a,y2=bx,(其中m,a,b都為常數),函數y1 , y2對應的曲線C1 , C2如圖所示.
(1)求函數y1與y2的解析式;
(2)若該商場一共投資10萬元經銷甲、乙兩種商品,求該商場所獲利潤的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點,且滿足:①
與
(
為坐標原點)的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】種子發芽率與晝夜溫差有關.某研究性學習小組對此進行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發芽數,如下表:
(I)從3月12日至3月16日中任選2天,記發芽的種子數分別為c,d,求事件“c,d均不小于25”的概率;
(II)請根據3月13日至3月15日的三組數據,求出y關于x的線性回歸方程;
(III)若由線性回歸方程得到的估計數據與實際數據誤差均不超過2顆,則認為回歸方程是可靠的,試用3月12日與16日的兩組數據檢驗,(II)中的回歸方程是否可靠?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com