【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn)
,
,
,
中有3個(gè)點(diǎn)在橢圓
:
上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)的直線與橢圓交于
,
兩點(diǎn)(
,
不是橢圓
的頂點(diǎn)),點(diǎn)
在橢圓
上,且
,直線
與
軸、
軸分別交于
、
兩點(diǎn),設(shè)直線
,
的斜率分別為
,
,證明:存在常數(shù)
使得
,并求出
的值.
【答案】(1);(2)證明見解析,
.
【解析】
(1)根據(jù)橢圓的對稱性可知,關(guān)于軸對稱的
,
在橢圓上.分類討論,當(dāng)
在橢圓上時(shí),當(dāng)
在橢圓上時(shí),分別求解,根據(jù)
確定,即可.
(2)設(shè),
,由題意可知
,
,設(shè)直線
的方程為
,與橢圓聯(lián)立,變形整理得
,確定
,
,從而
,直線
的方程為
,分別令
、
確定點(diǎn)
與點(diǎn)
的坐標(biāo),求直線
,
的斜率分別為
,
,求解即可.
(1)∵,
關(guān)于
軸對稱.
∴這2個(gè)點(diǎn)在橢圓上,即①
當(dāng)在橢圓上時(shí),
②
由①②解得,
.
當(dāng)在橢圓上時(shí),
③
由①③解得,
.
又
∴,
∴橢圓的方程為
.
(2)設(shè),
,則
.
因?yàn)橹本的斜率
,又
.
所以直線的斜率
.
設(shè)直線的方程為
,由題意知
,
.
由可得
,
所以,
.
由題意知,所以
,所以直線
的方程為
,令
,得
,即
,可得
,
令,得
,即
,可得
,
所以,即
,因此,存在常數(shù)
使得結(jié)論成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)零點(diǎn)
,
,求
的取值范圍,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)說法,其中正確的是( )
A.命題“若,則
”的否命題是“若
,則
”
B.“”是“雙曲線
的離心率大于
”的充要條件
C.命題“,
”的否定是“
,
”
D.命題“在中,若
,則
是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長,回收價(jià)值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.
(1)若在該市場隨機(jī)選取1個(gè)2018年成交的二手電腦,求其使用時(shí)間在上的概率;
(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,其中(單位:年)表示折舊電腦的使用時(shí)間,
(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.
由散點(diǎn)圖判斷,可采用作為該交易市場折舊電腦平均交易價(jià)格與使用年限
的回歸方程,若
,
,選用如下參考數(shù)據(jù),求
關(guān)于
的回歸方程,并預(yù)測在區(qū)間
(用時(shí)間組的區(qū)間中點(diǎn)值代表該組的值)上折舊電腦的價(jià)格.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
附:參考公式:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.參考數(shù)據(jù):
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)
,
與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線
與圓
相切.
(1)求橢圓的方程;
(2)已知過橢圓的左頂點(diǎn)
的兩條直線
,
分別交橢圓
于
,
兩點(diǎn),且
,求證:直線
過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)在(2)的條件下求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長,回收價(jià)值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.
(1)若在該市場隨機(jī)選取3個(gè)2018年成交的二手電腦,求至少有2個(gè)使用時(shí)間在上的概率;
(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖,其中(單位:年)表示折舊電腦的使用時(shí)間,
(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.
(ⅰ)由散點(diǎn)圖判斷,可采用作為該交易市場折舊電腦平均交易價(jià)格與使用年限
的回歸方程,若
,
,選用如下參考數(shù)據(jù),求
關(guān)于
的回歸方程.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
(ⅱ)根據(jù)回歸方程和相關(guān)數(shù)據(jù),并用各時(shí)間組的區(qū)間中點(diǎn)值代表該組的值,估算該交易市場收購1000臺折舊電腦所需的費(fèi)用
附:參考公式:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.參考數(shù)據(jù):
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線
與E交于A、B兩點(diǎn),且
,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為
,證明:
為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com