如圖,在三棱錐中
底面
點,
分別在棱
上,且
(Ⅰ)求證:平面
;
(Ⅱ)當為
的中點時,求
與平面
所成的角的大小;
(Ⅲ)是否存在點使得二面角
為直二面角?并說明理由.
(Ⅰ)略
(Ⅱ)與平面
所成的角的大小
(Ⅲ)存在點E使得二面角是直二面角.
【解析】【解法1】本題主要考查直線和平面垂直、直線與平面所成的角、二面角等基礎(chǔ)知識,考查空間想象能力、運算能力和推理論證能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
又,∴AC⊥BC.
∴BC⊥平面PAC. ……………4分
(Ⅱ)∵D為PB的中點,DE//BC,
∴,
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足為點E.
∴∠DAE是AD與平面PAC所成的角,……………6分
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP為等腰直角三角形,∴,
∴在Rt△ABC中,,∴
.
∴在Rt△ADE中,,
∴與平面
所成的角的大小
……………8分.
(Ⅲ)∵DE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE
平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角的平面角, ……………10分
∵PA⊥底面ABC,∴PA⊥AC,∴.
∴在棱PC上存在一點E,使得AE⊥PC,這時,
故存在點E使得二面角是直二面角. ……………12分
【解法2】如圖,以A為原煤點建立空間直角坐標系,
設(shè),由已知可得
.……………2分
(Ⅰ)∵,
∴,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.
……………4分
(Ⅱ)∵D為PB的中點,DE//BC,∴E為PC的中點,
∴,
∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足為點E.
∴∠DAE是AD與平面PAC所成的角, ……………6分
∵,∴
.
∴與平面
所成的角的大小
……………8分
(Ⅲ)解法同一 (略)
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)如圖,在三棱錐中,
底面
,點
,
分別在棱
上,且
(Ⅰ)求證:
平面
;(Ⅱ)當
為
的中點時,求
與平面
所成的角的大小;(Ⅲ)是否存在點
使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三第一次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱錐中,
(1)求證:平面⊥平面
(2)求直線PA與平面PBC所成角的正弦值;
(3)若動點M在底面三角形ABC上,二面角M-PA-C的余弦值為,求BM的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三第一學(xué)期期末考試理科數(shù)學(xué) 題型:解答題
. (本小題滿分10分)如圖,在三棱錐中,
底面
,點
,
分別在棱
上,且
(Ⅰ)求證:平面
;
(Ⅱ)當為
的中點時,求
與平面
所成的角的大小;
(Ⅲ)是否存在點使得二面角
為直二面角?并說明理
由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
如圖,在三棱錐中,
底面ABC,
,
AP=AC, 點,
分別在棱
上,且BC//平面ADE
(Ⅰ)求證:DE⊥平面;
(Ⅱ)當二面角為直二面角時,求多面體ABCED與PAED的體積比。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com