日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在P是直角梯形ABCD所在平面外一點,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD與底面成30°角,BE⊥PD于E,求直線BE與平面PAD所成的角.
分析:先證明AB⊥平面PAD,可得∠BEA為BE與平面PAD所成的角.根據條件解直角三角形ABE,求得∠BEA的大小.
解答:解:∵PA⊥平面ABCD,∴∠PDA為PD與底面所成的角,PA⊥AB.
∵∠BAD=90°,∴AB⊥AD.
再由PA∩AD=A,可得AB⊥平面PAD,AE是BE在平面PAD內的射影,∴∠BEA為BE與平面PAD所成的角.
∵BE⊥PD,∴AE⊥PD,
在Rt△PAD中,∠PDA=30°,AD=2a,
∴AE=a=AB,∠BEA=45°,即直線BE與平面PAD所成的角為45°.
點評:本題主要考查直線和平面垂直的判定定理、性質定理的應用,直線和平面所成的角的定義和求法,找出直線和平面所成的角,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在底面是直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
5
5
,又PA⊥平面ABCD,AD=3AB=3PA=3a,
(I)求二面角P-CD-A的正切值;
(II)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側面PBC⊥底面ABCD,點F在線段AP上,且滿足
PF
PA

(1)證明:PA⊥BD;
(2)當λ取何值時,直線DF與平面ABCD所成角為30°?

查看答案和解析>>

科目:高中數學 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.
(Ⅰ)求證:AB⊥平面PBC;
(Ⅱ)求平面PAD和平面BCP所成二面角(小于90°)的大小;
(Ⅲ)在棱PB上是否存在點M使得CM∥平面PAD?若存在,求
PMPB
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求證:平面PCD⊥平面PAC;
(2)設E是棱PD上一點,且PE=
1
3
PD,求異面直線AE與PB所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網在棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AD=2AB=2BC=4,P是A1D1的中點.
(1)求證:BP∥平面ACD1
(2)若M是AC的中點,且B1M⊥平面ACD1,求線段BB1的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 福利在线播放 | 狠狠狠狠狠狠 | 欧美黑人一区 | 日韩在线中文字幕 | 午夜亚洲 | 国产亚洲二区 | 国产99热 | 欧洲成人午夜免费大片 | 奇米影视首页 | 日韩激情视频一区二区 | 久久久成人网 | 成人亚洲一区 | 羞羞视频免费在线观看 | 国产精品久久久久久久久免费高清 | 五月婷婷中文网 | 伊人yinren22综合开心 | 久久99国产精品久久99大师 | 黄色自拍视频 | 欧美一级在线观看视频 | 成人午夜免费视频 | 密臀av | 欧美日韩久久 | 欧美精品一区二区三区在线播放 | 三级黄视频在线观看 | 久在线 | 91精品久久久久久 | 久久久99国产精品免费 | 亚洲欧美国产另类 | 日韩中文字幕免费在线播放 | 国产成人久久精品麻豆二区 | 欧美成人手机在线视频 | 极黄视频| 欧美一区二区在线视频 | 亚洲精品乱码久久久久久按摩观 | 一级电影院 | 久久久www | 亚洲日本乱码一区二区三区 | 美女超碰 | 国产精品国产成人国产三级 | 精品免费视频 | 国产福利观看 |