日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F為CE上的點,且BF⊥平面ACE.
(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求點D到平面ACE的距離.
(I)∵BF⊥平面ACE,
∴BF⊥AE,
∵二面角D-AB-E為直二面角,
∴平面ABCD⊥平面ABE,又BC⊥AB,∴BC⊥平面ABE,∴BC⊥AE,
又BF?平面BCE,BF∩BC=B,∴AE⊥平面BCE.

(II)連接AC、BD交于G,連接FG,
∵ABCD為正方形,∴BD⊥AC,
∵BF⊥平面ACE,BG⊥AC,⇒AC⊥平面BFG,
∴FG⊥AC,∠FGB為二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=
2

在直角三角形BCE中,CE=
BC2+BE2
=
6
,BF=
BC•BE
CE
=
2
2
6
=
2
3

在正方形中,BG=
2
,在直角三角形BFG中,sin∠FGB=
BF
BG
=
2
3
2
=
6
3

∴二面角B-AC-E為arcsin
6
3


(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACE的距離等于B到平面ACE的距離,BF⊥平面ACE,線段BF的長度就是點B到平面ACE的距離,即為D到平面ACE的距離所以D到平面的距離為
2
3
=
2
3
3

另法:過點E作EO⊥AB交AB于點O.OE=1.
∵二面角D-AB-E為直二面角,∴EO⊥平面ABCD.
設D到平面ACE的距離為h,
∵VD-ACE=VE-ACD,∴
1
3
S△ACB
•h=
1
3
S△ACD
•EO.
∵AE⊥平面BCE,∴AE⊥EC.∴h=
1
2
AD•DC•EO
1
2
AE•EC
=
1
2
×2×2×1
1
2
2
×
6
=
2
3
3

∴點D到平面ACE的距離為
2
3
3


解法二:
(Ⅰ)同解法一.
(Ⅱ)以線段AB的中點為原點O,OE所在直線為x軸,AB所在直線為y軸,
過O點平行于AD的直線為z軸,建立空間直角坐標系O-xyz,如圖.
∵AE⊥面BCE,BE?面BCE,∴AE⊥BE,
在Rt△AEB中,AB=2,O為AB的中點,
∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),
AE
=(1,1,0),
AC
=(0,2,2)
設平面AEC的一個法向量為
n
=(x,y,z),
AE
n
=0
AC
n
=0
,即
x+y=0
2y+2x=0.

解得
y=-x
z=x

令x=1,得
n
=(1,-1,1)是平面AEC的一個法向量.
又平面BAC的一個法向量為
m
=(1,0,0),
∴cos(
m
n
)=
m
n
|
m
|•|
n
|
=
1
3
=
3
3

∴二面角B-AC-E的大小為arccos
3
3

(III)∵ADz軸,AD=2,∴
AD
=(0,0,2),
∴點D到平面ACE的距離d=|
AD
|•|cos<
AD
n
>=
|
AD
n
|
|
n
|
=
2
3
=
2
3
3
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

直三棱柱ABC-A1B1C1的底面中,AB⊥AC,AB=AC=a,D為CC1的中點,
CC1
AC

(1)λ為何值時,A1D⊥平面ABD;
(2)當A1D⊥平面ABD時,求C1到平面ABD的距離;
(3)當二面角A-BD-C為60°時,求λ的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D為AB的中點.
(1)求證:BC1⊥平面AB1C;
(2)求證:BC1平面A1CD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四面體ABCD中,O、E分別為BD、BC的中點,且CA=CB=CD=BD=2,AB=AD=
2

(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,點P為平行四邊形ABCD外一點,且PD⊥平面ABCD,M為PC中點.
(1)求證:AP平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,ABCD是梯形,ABCD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E為PD的中點
(Ⅰ)求證:AE面PBC.
(Ⅱ)求直線AC與PB所成角的余弦值;
(Ⅲ)在面PAB內能否找一點N,使NE⊥面PAC.若存在,找出并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面是直角梯形,ABDC,∠DAB=90°,
PA⊥底面ABCD,PA=AD=DC=
1
2
AB=1,M是PB的中點.
(1)求證:CM平面PAD;
(2)求證:BC⊥平面PAC.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在長方體AC′中,AB=AC=a,BB′=b(b>a),連接BC′,過點B′作B′E⊥BC′交CC′于E.
(1)求證:AC′⊥平面EB′D′;
(2)求三棱錐C′-B′D′E的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖已知在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC=BC,M,N,P,Q分別是AA1,BB1,AB,B1C1的中點,
(1)求證:面PCC1⊥面MNQ;
(2)求證:PC1面MNQ.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久香蕉视频 | 男人的天堂免费 | 免费av直接看 | 成人高清视频在线观看 | 国产一区二区视频精品 | 午夜激情影院在线观看 | 久热九九 | 亚洲六月丁香色婷婷综合久久 | 久久久水蜜桃 | 一区二区视频在线 | 黄色视屏在线免费观看 | 亚洲精品在线免费 | 久久久久久久国产精品 | 亚洲黄色免费网站 | 国产精品电影 | 欧美成人一区二免费视频软件 | 国产精品久久久久久久一区探花 | 欧美激情综合五月色丁香小说 | 国产精品99久久久久久大便 | 国产高清自拍 | 91佛爷在线观看 | 国产一区中文字幕 | 欧洲亚洲成人 | 国产精品99久久 | 不卡一区 | 四虎最新紧急更新地址 | 亚洲免费网站在线观看 | 精品免费 | 91综合网 | 超碰97av | 91激情视频| 国产精品久久久久久一区二区三区 | 亚洲精品一区二区三区蜜桃下载 | 欧美精品一区二区三区蜜臀 | 91精品国产91久久久久久不卡 | 日本超碰 | 亚洲婷婷免费 | 国产成a| 凹凸日日摸日日碰夜夜爽孕妇 | 亚洲在线播放 | 国变精品美女久久久久av爽 |