【題目】已知二次函數f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.若不等式f(x)>2mx+1在[-1,3]恒成立,則實數m的取值范圍是______.
科目:高中數學 來源: 題型:
【題目】中文“函數”(function)一詞,最早由近代數學家李善蘭翻譯的之所以這么翻譯,他給出的原因是“凡此變數中函彼變數者,則此為彼之函數”,也即函數指一個量隨著另一個量的變化而變化下列選項中兩個函數相等的是( 。
A.與
B.
與
C.與
D.
與
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-e-x(x∈R,且e為自然對數的底數).
(1)判斷函數f(x)的單調性與奇偶性;
(2)是否存在實數t,使不等式f(x-t)+f(x2-t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線
:
,直線
與拋物線
交于
,
兩點.
(1)若直線,
的斜率之積為
,證明:直線
過定點;
(2)若線段的中點
在曲線
:
上,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某物流公司購買了一塊長AM=90米,寬AN=30米的矩形地塊AMPN,規劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路和停車場,要求頂點C在地塊對角線MN上,B、D分別在邊AM、AN上,假設AB長度為x米.若規劃建設的倉庫是高度與AB的長相同的長方體建筑,問AB長為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
【答案】(I)拋物線C的方程為,其準線方程為
(II)符合題意的直線l 存在,其方程為2x+y-1 =0.
【解析】
試題(Ⅰ)求拋物線標準方程,一般利用待定系數法,只需一個獨立條件確定p的值:(-2)2=2p·1,所以p=2.再由拋物線方程確定其準線方程:,(Ⅱ)由題意設
:
,先由直線OA與
的距離等于
根據兩條平行線距離公式得:
解得
,再根據直線
與拋物線C有公共點確定
試題解析:解 (1)將(1,-2)代入y2=2px,得(-2)2=2p·1,
所以p=2.
故所求的拋物線C的方程為
其準線方程為.
(2)假設存在符合題意的直線,
其方程為.
由得
.
因為直線與拋物線C有公共點,
所以Δ=4+8t≥0,解得.
另一方面,由直線OA到的距離
可得,解得
.
因為-1[-,+∞),1∈[-
,+∞),
所以符合題意的直線存在,其方程為
.
考點:拋物線方程,直線與拋物線位置關系
【名師點睛】求拋物線的標準方程的方法及流程
(1)方法:求拋物線的標準方程常用待定系數法,因為未知數只有p,所以只需一個條件確定p值即可.
(2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.
提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設為y2=mx或x2=my(m≠0).
【題型】解答題
【結束】
22
【題目】已知橢圓:
的左右焦點與其短軸的一個端點是正三角形的三個頂點,點
在橢圓
上.
(1)求橢圓的方程;
(2)直線過橢圓左焦點
交橢圓于
,
為橢圓短軸的上頂點,當直線
時,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com