日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
3.正三棱柱ABC-A1B1C1底邊長為2,E,F分別為BB1,AB的中點.
( I)已知M為線段B1A1上的點,且B1A1=4B1M,求證:EM∥面A1FC;
( II)若二面角E-A1C-F所成角的余弦值為$\frac{{2\sqrt{7}}}{7}$,求AA1的值.

分析 (I)取B1A1中點為N,連結BN,推導出BN∥A1F,從而EM∥BN,進而EM∥A1F,由此能證明EM∥面A1FC.
(II)以F為坐標原點建立空間直角坐標系,設AA1=a,利用向量法能求出結果.

解答 證明:(I)取B1A1中點為N,連結BN,
則BN∥A1F,又B1A1=4B1M,
則EM∥BN,所以EM∥A1F,
因為EM?面A1FC,A1F?面A1FC,
故EM∥面A1FC.
解:(II)如圖,以F為坐標原點建立空間直角坐標系,設AA1=a.
則$F(0,0,0),{A_1}(-1,0,a),E(1,0,\frac{a}{2}),C(0,\sqrt{3},0)$,
$\overrightarrow{EC}=(-1,\sqrt{3},-\frac{a}{2}),\overrightarrow{FC}=(0,\sqrt{3},0),\overrightarrow{{A_1}E}=(2,0,-\frac{a}{2}),\overrightarrow{{A_1}C}=(1,\sqrt{3},-a)$,
設平面A1CF法向量為$\overrightarrow m=(x,y,z)$,
設平面A1CE法向量為$\overrightarrow n=(x,y,z)$.
則$\left\{\begin{array}{l}\overrightarrow{{A_1}C}•\overrightarrow m=x+\sqrt{3}y-az=0\\ \overrightarrow{FC}•\overrightarrow m=\sqrt{3}y=0\end{array}\right.$,取z=1,得$\overrightarrow m=(a,0,1)$,
$\left\{\begin{array}{l}\overrightarrow{{A_1}C}•\overrightarrow n=x+\sqrt{3}y-az=0\\ \overrightarrow{{A_1}E}•\overrightarrow n=2x-\frac{a}{2}z=0\end{array}\right.$,取x=a,得$\overrightarrow n=(a,\sqrt{3}a,4)$;
設二面角E-A1C-F的平面角為θ,
∵二面角E-A1C-F所成角的余弦值為$\frac{{2\sqrt{7}}}{7}$,
∴$cosθ=cos<\overrightarrow m,\overrightarrow n>=\frac{{{a^2}+4}}{{\sqrt{{a^2}+1}•\sqrt{4{a^2}+16}}}=\frac{{2\sqrt{7}}}{7}$,
整理,得a2=$\frac{4}{3}$,∴a=$\frac{2\sqrt{3}}{3}$,
故當二面角E-A1C-F所成角的余弦值為$\frac{{2\sqrt{7}}}{7}$時,AA1的值為$\frac{2\sqrt{3}}{3}$.

點評 本題考查線面平行的證明,考查滿足條件的線段長的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.若復數z=1+i,則$\frac{z^2}{i}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.拋物線y=ax2的準線方程是y=-1,則a的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,已知b=2,c=2$\sqrt{2}$,且C=$\frac{π}{4}$,則△ABC的面積為$\sqrt{3}+1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.下列說法正確的是(  )
(1)已知等比數列{an},則“數列{an}單調遞增”是“數列{an}的公比q>1”的充分不必要條件;
(2)二項式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展開式按一定次序排列,則無理項互不相鄰的概率是$\frac{1}{5}$;
(3)已知$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$,則$S=\frac{π}{16}$;
(4)為了解1000名學生的學習情況,采用系統抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.某同學證明不等式$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$的過程如下:要證$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需證$\sqrt{7}$+$\sqrt{5}$>$\sqrt{11}$+1,即證7+2$\sqrt{7×5}$+5>11+2$\sqrt{11}$+1,即證$\sqrt{35}$>$\sqrt{11}$,即證35>11.因為35>11成立,所以原不等式成立.這位同學使用的證明方法是(  )
A.綜合法B.分析法
C.綜合法,分析法結合使用D.其他證法

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.設函數f(x)=ex-ax2+1,曲線y=f(x)在x=1處的切線方程為y=bx+2.
(1)求a,b的值;
(2)當x>0時,求證:f(x)≥(e-2)x+2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.某校高三(1)班32名學生參加跳遠和擲實心球兩項測試.跳遠和擲實心球兩項測試成績合格的人數分別為26人和23人,這兩項成績均不合格的有3人,則這兩項成績均合格的人數是(  )
A.23B.20C.21D.19

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.點P(1,4)關于直線y=-x的對稱點的坐標是(  )
A.(1,-4)B.(-4,1)C.(4,-1)D.(-4,-1)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品视频污 | 欧美极品一区二区三区 | 国产1级片 | 精品国产乱码久久久久久蜜柚 | 2019天天操 | 欧美a∨ | 成年人福利| 亚洲欧洲中文日韩 | 91精品国产91综合久久蜜臀 | 国产一二三区在线观看 | 国产一区二区在线看 | 天天看天天干 | 国产精品99久久 | 亚洲一区二区中文字幕 | 久久99精品久久久久久久青青日本 | 理论黄色片 | 久久亚洲一区二区三区四区 | 亚洲免费视频网站 | 欧美日韩国产免费一区二区三区 | 天天舔天天干天天操 | aaaaaa黄色片| 亚洲成av| 亚洲免费在线视频 | 久久狠狠| 国产91黄色| 国产精品久久久久久久久免费高清 | 欧美一区二区三区免费观看 | gogo熟少妇大胆尺寸 | 久久综合狠狠综合久久综合88 | 日韩高清在线一区 | 中文字幕一区二区在线观看 | 一级免费黄色免费片 | 久产久精 | 亚洲第一成年免费网站 | 亚洲视频观看 | 久久久久久精 | 亚洲人免费 | 国产精品视频一区二区三区 | 污视频在线观看免费 | 可以在线观看的黄色 | 国产成人在线视频观看 |