如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點。
(1)求異面直線AE與A1C所成的角;
(2)若G為C1C上一點,且EG⊥A1C,試確定點G的位置;
(3)在(2)的條件下,求二面角A1-AG-E的大小(文科求其正切值)。
(1)
(2)G是CC1的中點
(3) 故二面角的平面角是π-arctan
(文)二面角的平面角的正切值為-
(1)取B1C1的中點E1,連A1E1,E1C,則AE∥A1E1,∴∠E1A1C是異面直線AE與A1C所成的角。設,則
中,
。
所以異面直線AE與A1C所成的角為。 ------------------4分
(2).由(1)知,A1E1⊥B1C1,又因為三棱柱ABC-A1B1C1是直三棱柱
⊥BCC1B1,又
EG⊥A1C
CE1⊥EG.
∠
=∠GEC
~
即
得
所以G是CC1的中點 ---------------------------- --8分
(3)連結AG,設P是AC的中點,過點P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC.
又平面ABC⊥平面ACC1A1
EP⊥平面ACC1A1
而PQ⊥AG EQ⊥AG.
∠PQE是二面角C-AG-E的平面角.
由EP=a,AP=a,PQ=,得
所以二面角C-AG-E的平面角是arctan,而所求二面角是二面角C-AG-E的補角,故二面角
的平面角是π-arctan ------------------------12分
(文)二面角的平面角的正切值為-。------------------------12分
科目:高中數學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數學 來源:2011年四川省招生統一考試理科數學 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數學 來源:2011年高考試題數學理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數學 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com