【題目】已知函數.
(1)判斷函數在
上的單調性,并證明;
(2)若恒成立,求
的最小值;
(3)記,求集合
中正整數的個數;
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,若函數
在
,
(
)處導數相等,證明:
;
(2)是否存在,使直線
是曲線
的切線,也是曲線
的切線,而且這樣的直線
是唯一的,如果存在,求出直線
方程,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
(
,
)的左、右焦點分別為
,
,過點
且斜率為
的直線交雙曲線于
,
兩點,線段
的垂直平分線恰過點
,則該雙曲線的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點,焦點在
軸上,離心率為
的橢圓過點
(1)求橢圓的方程;
(2)設不過原點的直線
與該橢圓交于
兩點,滿足直線
的斜率依次成等比數列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體中,E,F分別為線段CD和
上的動點,且滿足
,則四邊形
所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( )
A. 有最小值B. 有最大值
C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,一個長軸頂點在直線
上,若直線
與橢圓交于
,
兩點,
為坐標原點,直線
的斜率為
,直線
的斜率為
.
(1)求該橢圓的方程.
(2)若,試問
的面積是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點為
,左右頂點分別為
.經過點
的直線
與橢圓
交于
兩點.
(1)求橢圓方程及離心率.
(2)當直線的傾斜角為
時,求線段
的長;
(3)記的面積分別為
和
,求
最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為F
,點B是橢圓C的短軸的一個端點,ΔOFB的面積為
,橢圓C上的兩點H、G關于原點O對稱,且
、
的等差中項為2
(1)求橢圓的方程;
(2)是否存在過點M(2,1)的直線與橢圓C交于不同的兩點P、Q,且使得
成立?若存在,試求出直線
的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)為曲線
上的動點,點
在線段
上,且滿足
,求點
的軌跡
的直角坐標方程;
(2)設點的極坐標為
,點
在曲線
上,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com