C
分析:函數y=f(x)與y=x在(0,1],(1,2],(2,3],(3,4],…(n,n+1]上的交點依次為(0,0),(1,1),(2,2),(3,3),(4,4),…(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次為3,4,…n+1.方程f(x)-x=0的根按從小到大的順序排列所得數列為0,1,2,3,4,…其通項公式為an=n-1.
解答:若0<x≤1,則-1<x-1<0,得f(x)=f(x-1)+1=2x-1,
若1<x≤2,則0<x-1≤1,得f(x)=f(x-1)+1=2x-2+1
若2<x≤3,則1<x-1≤2,得f(x)=f(x-1)+1=2x-3+2
若3<x≤4,則2<x-1<3,得f(x)=f(x-1)+1=2x-4+3
以此類推,若n<x≤n+1(其中n∈N),則f(x)=f(x-1)+1=2x-n-1+n,
下面分析函數f(x)=2x的圖象與直線y=x+1的交點
很顯然,它們有兩個交點(0,1)和(1,2),
由于指數函數f(x)=2x為增函數且圖象下凸,故它們只有這兩個交點.
然后①將函數f(x)=2x和y=x+1的圖象同時向下平移一個單位即得到函數f(x)=2x-1和y=x的圖象,
取x≤0的部分,可見它們有且僅有一個交點(0,0).
即當x≤0時,方程f(x)-x=0有且僅有一個根x=0.
②取①中函數f(x)=2x-1和y=x圖象-1<x≤0的部分,再同時向上和向右各平移一個單位,
即得f(x)=2x-1和y=x在0<x≤1上的圖象,顯然,此時它們仍然只有一個交點(1,1).
即當0<x≤1時,方程f(x)-x=0有且僅有一個根x=1.
③取②中函數f(x)=2x-1和y=x在0<x≤1上的圖象,繼續按照上述步驟進行,
即得到f(x)=2x-2+1和y=x在1<x≤2上的圖象,顯然,此時它們仍然只有一個交點(2,2).
即當1<x≤2時,方程f(x)-x=0有且僅有一個根x=2.
④以此類推,函數y=f(x)與y=x在(2,3],(3,4],…(n,n+1]上的交點依次為(3,3),(4,4),…(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次為3,4,…n+1.
綜上所述方程f(x)-x=0的根按從小到大的順序排列所得數列為
0,1,2,3,4,…
其通項公式為an=n-1;
故選C.
點評:本題考查數列的遞推公式的合理運用,解題時要注意分類討論思想的合理運用.