設(shè)函數(shù),其中
為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求
的取值范圍及
的極值點(diǎn)。
(Ⅰ)函數(shù)在定義域
上單調(diào)遞增;(Ⅱ)當(dāng)且僅當(dāng)
時(shí)
有極值點(diǎn); 當(dāng)
時(shí),
有惟一最小值點(diǎn)
;當(dāng)
時(shí),
有一個(gè)極大值點(diǎn)
和一個(gè)極小值點(diǎn)
.
【解析】
試題分析:(Ⅰ)函數(shù)在定義域上的單調(diào)性的方法,一是利用定義,二是利用導(dǎo)數(shù),此題既有代數(shù)函數(shù)又有對(duì)數(shù)函數(shù),顯然利用導(dǎo)數(shù)判斷,只需對(duì)
求導(dǎo),判斷
的符號(hào)即可;(Ⅱ)求
的極值,只需對(duì)
求導(dǎo)即可,利用導(dǎo)數(shù)求函數(shù)的極值一般分為四個(gè)步驟:①確定函數(shù)的定義域;②求出
;③令
,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當(dāng)
時(shí),函數(shù)
無極值點(diǎn),只需討論
的情況,解
的根,討論在
范圍內(nèi)根的個(gè)數(shù),從而確定
的取值范圍及
的極值點(diǎn),值得注意的是,求出
的根時(shí),忽略討論根是否在定義域內(nèi),而出錯(cuò).
試題解析:(Ⅰ)由題意知,的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121700431047149143/SYS201312170045263036604515_DA.files/image002.png">,
∴當(dāng)
時(shí),
,函數(shù)
在定義域
上單調(diào)遞增.
(Ⅱ)①由(Ⅰ)得,當(dāng)時(shí),函數(shù)
無極值點(diǎn),②
時(shí),
有兩個(gè)相同的解
,但當(dāng)
時(shí),
,當(dāng)
時(shí),
時(shí),函數(shù)
在
上無極值點(diǎn),③當(dāng)
時(shí),
有兩個(gè)不同解,
,
時(shí),
,而
,此時(shí)
,
隨
在定義域上的變化情況如下表:
|
|
|
|
|
|
|
|
|
減 |
極小值 |
增 |
由此表可知:當(dāng)時(shí),
有惟一極小值點(diǎn)
ii) 當(dāng)時(shí),0<
<1,此時(shí),
,
隨
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
增 |
極大值 |
減 |
極小值 |
增 |
由此表可知:時(shí),
有一個(gè)極大值
,和一個(gè)極小值點(diǎn)
;
綜上所述:當(dāng)且僅當(dāng)
時(shí)
有極值點(diǎn); 當(dāng)
時(shí),
有惟一最小值點(diǎn)
;當(dāng)
時(shí),
有一個(gè)極大值點(diǎn)
和一個(gè)極小值點(diǎn)
考點(diǎn):導(dǎo)數(shù)與函數(shù)的單調(diào)性、導(dǎo)數(shù)與函數(shù)的極值,考查學(xué)生的基本推理能力及運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),其中
為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求
的取值范圍及
的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山西省高三第一學(xué)期8月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),其中
為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求
的取值范圍及
的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三10月月考文科數(shù)學(xué)卷 題型:解答題
設(shè)函數(shù),其中
為常數(shù).
(1)證明:對(duì)任意,
的圖象恒過定點(diǎn);
(2)當(dāng)時(shí),判斷函數(shù)
是否存在極值?若存在,證明你的結(jié)論并求出所有
極值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)20. (14分)設(shè)函數(shù),其中
為常數(shù).
(1)當(dāng)時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(2)若函數(shù)的有極值點(diǎn),求
的取值范圍及
的極值點(diǎn);
(3)求證對(duì)任意不小于3的正整數(shù),不等式
都成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com