日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設數列{an}的前n項和為Sn,且a1=1,Sn=an+1-1.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)是否存在實數λ,使得數列{Sn+λ•n-λ•2n}為等差數列?若存在,求出λ的值;若不存在,則說明理由.
(Ⅲ)求證:
1
3
2
(a1+1)(a2+1)
+
22
(a2+1)(a3+1)
+
23
(a3+1)(a4+1)
+…+
2n
(an+1)(an+1+1)
<1
分析:(Ⅰ)由題設條件知(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
an+1
an
=2
(n≥2),a2=S1+1=a1+1=2,由此可知an=2n-1
(Ⅱ)若{Sn+λ•n-λ•2n}為等差數列,則S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ則成等差數列,由此能推出λ=1.由此可知存在實數λ=1,使得數列{Sn+λ•n-λ•2n}成等差數列.
(Ⅲ)由
2k
(ak+1)(ak+1+1)
=
2k
(2k-1+1)(2k+1)
=2(
1
2k-1+1
-
1
2k+1
)
入手,可得證.
解答:解析:(Ⅰ)∵an+1-Sn-1=0①
∴n≥2時,an-Sn-1-1=0②
①─②得:
(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
an+1
an
=2
(n≥2)(2分)
由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2
∴{an}是首項為1,公比為2的等比數列,
∴an=2n-1(4分)
(Ⅱ)解法一:由(Ⅰ)知Sn=
1-2n
1-2
=2n-1
(5分)
若{Sn+λ•n-λ•2n}為等差數列,
則S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ則成等差數列,(6分)
∴(S1-λ)+(S3-5λ)=2(S2-2λ)?8-6λ=6-4λ,∴λ=1(8分)
當λ=1時,Sn+λ•n-λ•2n=Sn+n-2n=n-1,顯然{n-1}成等差數列,
∴存在實數λ=1,使得數列{Sn+λ•n-λ•2n}成等差數列.(9分)
解法二:由(Ⅰ)知Sn=
1-2n
1-2
=2n-1
(5分)
∴Sn+λ•n-λ•2n=(2n-1)+λ•n-λ•2n=λ•n-1+(1-λ)•2n(7分)
要使數列{Sn+λ•n-λ•2n}成等差數列,則只須1-λ=0,即λ=1即可.(8分)
故存在實數λ=1,使得數列{Sn+λ•n-λ•2n}成等差數列.(9分)
(Ⅲ)∵
2k
(ak+1)(ak+1+1)
=
2k
(2k-1+1)(2k+1)
=2(
1
2k-1+1
-
1
2k+1
)
(10分)
2
(a1+1)(a2+1)
+
22
(a2+1)(a3+1)
+
23
(a3+1)(a4+1)
++
2n
(an+1)(an+1+1)

=2[(
1
20+1
-
1
2+1
)+(
1
2+1
-
1
22+1
)+(
1
22+1
-
1
22+1
)++(
1
2k-1+1
-
1
2k+1
)]

=2(
1
2
-
1
2k+1
)
(12分)
0<
1
2k+1
1
3

1
3
≤2(
1
2
-
1
2k+1
)<1

1
3
2
(a1+1)(a2+1)
+
22
(a2+1)(a3+1)
+
23
(a3+1)(a4+1)
++
2n
(an+1)(an+1+1)
<1
(14分)
點評:本題考查數列的性質和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數列{an}的通項公式;
(2)設bn=an(2n-1),求數列{bn}的前n項的和.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列an的前n項的和為Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數列bn的前n項的和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區域為Dn,若Dn內的整點(整點即橫坐標和縱坐標均為整數的點)個數為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數列{an}的通項公式;
(3)設數列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鄭州一模)設數列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品乱码久久久久久金桔影视 | 日韩视频区 | 精品色区 | 国产精品毛片一区二区在线看 | 日韩精品久久久久久 | 激情五月综合 | 免费国产一区二区 | 国产高清无密码一区二区三区 | 国产在线一区二区三区在线观看 | 日本不卡高字幕在线2019 | 日日搞夜夜操 | 国产www在线| 欧美性猛交一区二区三区精品 | 日韩欧美国产一区二区 | 黄色在线免费观看视频网站 | 亚洲毛片 | 天堂资源在线 | www.四虎.com| 精品国产一区二区三区久久影院 | 黄色影视| 美女黄频在线 | 日本一区二区不卡视频 | 一本色道久久99精品综合 | 日韩av不卡在线播放 | 亚洲日本久久 | 久久国产精品视频 | 操操操日日日 | 日韩一级在线免费观看 | 毛片大全| 亚洲在线视频 | 精品国模一区二区三区欧美 | 国产精品毛片一区二区在线看 | 日韩一区二区三区av | 色婷婷综合久久久中文字幕 | 成人免费毛片嘿嘿连载视频 | 国产美女在线精品免费观看网址 | 精品欧美激情在线观看 | 国产一区二区三区免费在线 | 精一区二区 | 中文字幕在线三区 | 欧美午夜视频在线观看 |