【題目】中石化集團獲得了某地深海油田區塊的開采權,集團在該地區隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探. 由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節約勘探費用.勘探初期數據資料見如表:
(Ⅰ)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為,求
,并估計
的預報值;
(Ⅱ)現準備勘探新井,若通過1、3、5、7號井計算出的
的值(
精確到0.01)相比于(Ⅰ)中
的值之差不超過10%,則使用位置最接近的已有舊井
,否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結果:)
(Ⅲ)設出油量與勘探深度的比值不低于20的勘探并稱為優質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優質井的概率.
科目:高中數學 來源: 題型:
【題目】已知函數,
且
.
(1)若函數在
上恒有意義,求
的取值范圍;
(2)是否存在實數,使函數
在區間
上為增函數,且最大值為
?若存在求出
的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊
,斜邊
.現有甲、乙、丙三位小朋友分別在
大道上嬉戲,所在位置分別記為點
.
(1)若甲乙都以每分鐘的速度從點
出發在各自的大道上奔走,到大道的另一端
時即停,乙比甲遲2分鐘出發,當乙出發1分鐘后,求此時甲乙兩人之間的距離;
(2)設,乙丙之間的距離是甲乙之間距離的2倍,且
,請將甲
乙之間的距離表示為θ的函數,并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】是指大氣中空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國
標準采用世界衛生組織設定的最寬限值,即
日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75微克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.某城市環保局從該市市區2017年上半年每天的
監測數據中隨機抽取18天的數據作為樣本,將監測值繪制成莖葉圖如下圖所示(十位為莖,個位為葉).
(1)求這18個數據中不超標數據的平均數與方差;
(2)在空氣質量為一級的數據中,隨機抽取2個數據,求其中恰有一個為日均值小于30微克/立方米的數據的概率;
(3)以這天的
日均值來估計一年的空氣質量情況,則一年(按
天計算)中約有多少天的空氣質量超標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數方程為
(
為參數,
),以
為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求已知曲線和曲線
交于
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底邊為等邊三角形的斜三棱柱ABC﹣A1B1C1中,AA1AB,四邊形B1C1CB為矩形,過A1C作與直線BC1平行的平面A1CD交AB于點D.
(Ⅰ)證明:CD⊥AB;
(Ⅱ)若AA1與底面A1B1C1所成角為60°,求二面角B﹣A1C﹣C1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
過點
,且傾斜角為
,在極坐標系(與平面直角坐標系
取相同的長度,以原點
為極點,
軸的非負半軸為極軸)中,曲線
的極坐標方程為
.
(1)求直線的參數方程與曲線
的直角坐標方程;
(2)設曲線與直線
交于點
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝公司生產得到襯衫,每件定價80元,在某城市年銷售8萬件,現在該公司在該市設立代理商來銷售襯衫代理商要收取代銷費,代銷費為銷售金額的%(即每銷售100元收取
元),為此,該襯衫每件價格要提高到
元才能保證公司利潤.由于提價每年將少銷售
萬件,如果代理商每年收取的代銷費不小于16萬元,則
的取值范圍是___________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com