【題目】已知圓錐的頂點為A,高和底面的半徑相等,BE是底面圓的一條直徑,點D為底面圓周上的一點,且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.B.
C.
D.
【答案】A
【解析】
根據圓錐高和底面的半徑相等,且點D為底面圓周上的一點,∠ABD=60,可知D為的中點,則以底面中心為原點,分別以OD,OE,OA為x,y,z軸,建立空間直角坐標系,不妨設底面半徑為1,求得向量
,
的坐標,代入公式cos
,
求解.
因為高和底面的半徑相等,∴OE=OB=OA,OA⊥底面DEB.
∵點D為底面圓周上的一點,且∠ABD=60°,
∴AB=AD=DB;
∴D為的中點
建立如圖所示空間直角坐標系,
不妨設OB=1.
則O(0,0,0),B(0,﹣1,0),D(1,0,0),A(0,0,1),E(0,1,0),
∴(0,﹣1,﹣1),
(﹣1,1,0),
∴cos,
,
∴異面直線AM與PB所成角的大小為.
∴異面直線AB與DE所成角的正弦值為.
故選:A.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線
:
,過拋物線焦點
且與
軸垂直的直線與拋物線相交于
、
兩點,且
的周長為
.
(1)求拋物線的方程;
(2)若直線過焦點
且與拋物線
相交于
、
兩點,過點
、
分別作拋物線
的切線
、
,切線
與
相交于點
,求:
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與直線
互相垂直,且交點為Q,點
,線段QF的垂直平分線與直線
交于點P.
(I)若動點P的軌跡為曲線E,求曲線E的方程;
(Ⅱ)已知點,經過點M的兩條直線分別與曲線E交于A,B和C,D,且
,設直線AC,BD的斜率分別為
,是否存在常數
,使得當
變動時,
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F為橢圓(a>b>0)的一個焦點,點A為橢圓的右頂點,點B為橢圓的下頂點,橢圓上任意一點到點F距離的最大值為3,最小值為1.
(1)求橢圓的標準方程;
(2)若M、N在橢圓上但不在坐標軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1和k2,求證:k1k2=e2﹣1(e為橢圓的離心率).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為
,曲線C2的直角坐標方程為
.
(1)若直線l與曲線C1交于M、N兩點,求線段MN的長度;
(2)若直線l與x軸,y軸分別交于A、B兩點,點P在曲線C2上,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log3(ax+b)的圖象經過點A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)設數列{an}的前n項和為Sn,bn,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
,過點
作平面
的垂線,垂足為
與
的交點
,
是線段
的中點.
(1)求證:DE//平面;
(2)若四棱錐的體積為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
,
,
為
的中點,點
,
分別在線段
,
上運動(其中
不與
,
重合,
不與
,
重合),且
,沿
將
折起,得到三棱錐
,則三棱錐
體積的最大值為__________;當三棱錐
體積最大時,其外接球的表面積的值為_______________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com