日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知函數(shù)f(x)=x3-數(shù)學(xué)公式,且f(x)在x=1處取得極值.
(1)求b的值;
(2)若當(dāng)x∈[1,2]時(shí),f(x)<c2恒成立,求c的取值范圍;
(3)c為何值時(shí),曲線y=f(x)與x軸僅有一個(gè)交點(diǎn).

解:(1)∵f(x)=x3-
∴f′(x)=3x2-x+b,….(1分)
∵f(x)在x=1處取極值,
∴f′(1)=0 …(2分)
∴3-1+b=0
即b=-2 …(3分)
(2)由(1)可得f′(x)=3x2-x-2
令f′(x)=0,則x=,或x=1 …..(4分)
∵x∈(-∞,)時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(,1)時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增.
∴在閉區(qū)間[-1,2]上,f(x)單調(diào)遞增 …(5分)
∴在閉區(qū)間[-1,2]上,f(x)的最大值為f(2)=2+c<c2,…(6分)
∴c>2,或c<-1 …(7分)
(3)由(1)、(2)可知:
f(x)的極大值為f()=
f(x)的極小值為f(1)=c- …(8分)
∵當(dāng)f()<0,或f(1)>0時(shí),曲線y=f(x)與x軸僅有一個(gè)交點(diǎn) ….(9分)
<0,或c->0,
即c<,或c>時(shí),
曲線y=f(x)與x軸僅有一個(gè)交點(diǎn)…(10分)
分析:(1)由已知中函數(shù)f(x)=x3-,且f(x)在x=1處取得極值,我們求出f′(x)的解析式,根據(jù)f′(1)=0,我們易可構(gòu)造一個(gè)關(guān)于b的方程,解方程即可得到b的值;
(2)利用導(dǎo)數(shù)法,我們可以判斷出當(dāng)x∈[1,2]時(shí),函數(shù)f(x)的單調(diào)性,進(jìn)而求出f(x)在區(qū)間[1,2]的最大值,根據(jù)當(dāng)x∈[1,2]時(shí),f(x)<c2恒成立,可以構(gòu)造一個(gè)關(guān)于c的不等式,解不等式即可得到c的取值范圍;
(3)若曲線y=f(x)與x軸僅有一個(gè)交點(diǎn),則y=f(x)的極大值小于0,或y=f(x)的極小值大于0,進(jìn)而構(gòu)造關(guān)于x的不等式,解不等式即可求出c的取值范圍.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,其中根據(jù)函數(shù)的解析式,求出導(dǎo)函數(shù)的解析式是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产亚洲精品v | 99久久精品国产一区二区三区 | 国产一级免费在线观看 | 老司机深夜福利视频 | 羞羞小视频在线观看 | 色吧久久 | 一区二区三区四区不卡视频 | 97人人爽 | 久久久精品免费观看 | 精品国产乱码久久久久久1区二区 | 国产精品久久久久久久久动漫 | 黄色国产大片 | 国产精品成av人在线视午夜片 | 欧美日韩一区二区三区不卡视频 | 在线精品观看 | caoporon | 日本午夜精品 | 国产免费视频 | 日韩中出 | 99精品欧美一区二区蜜桃免费 | www一起操 | 国产精品久久久久久久久久10秀 | av在线播放一区二区 | 国产精品一区久久久久 | 亚洲电影在线观看 | 欧美日在线 | 一区二区三区四区不卡视频 | 国产ts余喵喵和直男多体位 | 亚洲精品一区二三区不卡 | 色婷婷综合在线观看 | 亚洲高清久久 | 亚洲毛片在线 | 国产精品自拍99 | 天天干天天操天天爽 | 亚洲欧美国产另类 | 欧美一区二区三区在线 | 欧美黄视频在线观看 | 亚洲毛片| 在线欧美成人 | 成人午夜免费视频 | 亚洲成av人片在线观看 |