【題目】已知數列{an}的首項a1=a,其前n項和為Sn , 且滿足Sn+Sn﹣1=3n2+2n+4(n≥2),若對任意的n∈N* , an<an+1恒成立,則a的取值范圍是( )
A.( ,
)
B.( ,
)
C.( ,
)
D.(﹣∞, )
【答案】C
【解析】解:由Sn+Sn﹣1=3n2+2n+4(n≥2),可以得到Sn+1+Sn=3(n+1)2+2(n+1)+4, 兩式相減得an+1+an=6n+5,
故an+2+an+1=6n+11,兩式再相減得an+2﹣an=6,
由n=2得a1+a2+a1=20,a2=20﹣2a,
故偶數項為以20﹣2a為首項,以6為公差的等差數列,
從而a2n=6n+14﹣2a;
n=3得a1+a2+a3+a1+a2=37,a3=2a﹣3,
從而a2n+1=6n﹣9+2a,
由條件得 ,
解得 <a<
,
故選:C.
【考點精析】本題主要考查了數列的通項公式的相關知識點,需要掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和
都為矩形。
(Ⅰ)若,證明:直線
平面
;
(Ⅱ)設,
分別是線段
,
的中點,在線段
上是否存在一點
,使直線
平面
?請證明你的結論。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知函數(
),記
的導函數為
.
(1)證明:當時,
在
上單調遞增;
(2)若在
處取得極小值,求
的取值范圍;
(3)設函數的定義域為
,區間
,若
在
上是單調函數,
則稱在
上廣義單調.試證明函數
在
上廣義單調.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(1+sin2x,sinx﹣cosx),
=(1,sinx+cosx),函數f(x)=
(1)求函數f(x)的最小正周期;
(2)求函數f(x)的最大值及取得最大值相應的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數中等可能隨機產生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學依據自己對程序框圖的理解,各自編寫程序重復運行n次后,統計記錄了輸出y的值為i(i=1,2,3)的頻數.以下是甲、乙所作頻數統計表的部分數據.
甲的頻數統計表(部分)
運行 | 輸出y的值 | 輸出y的值 | 輸出y的值 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
乙的頻數統計表(部分)
運行 | 輸出y的值 | 輸出y的值 | 輸出y的值 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
當n=2100時,根據表中的數據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數表示),并判斷兩位同學中哪一位所編寫程序符合算法要求的可能性較大.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com