日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,在四邊形ABCD中,
BC
AD
(λ∈R),|
AB
|=|
AD
|=2,|
CB
-
CD
|=2
3
,且△BCD是以BC為斜邊的直角三角形,則
CB
BA
的值為
-4
-4
分析:由向量共線的定義,可得BC∥AD.在△ABD中根據三邊的長,利用余弦定理算出cos∠ADB=
3
2
,從而可得∠ADB=
π
6
,得到∠DBC=
π
6
,然后在Rt△BCD中利用三角函數定義算出BC=4.最后利用前面算出的數據,根據數量積的定義算出
BA
BC
=4,從而得到
CB
BA
的值.
解答:解:∵
BC
AD
,∴BC∥AD,可得四邊形ABCD為梯形.
∵△ABD中,|
AB
|=|
AD
|=2,∴∠ADB=∠ABD.
∵|
BD
|=|
CB
-
CD
|=2
3
,
∴△ABD中根據余弦定理,得cos∠ADB=
4+12-4
2×2×2
3
=
3
2
,
結合∠ADB∈(0,π),可得∠ADB=
π
6
,從而∠DBC=∠ADB=
π
6
,
∵△BCD是以BC為斜邊的直角三角形,∴BC=
BD
cos
π
6
=
2
3
3
2
=4,
∵∠ABC=∠ABD+∠DBC=
π
3
,
|BA|
=2,
|BC|
=4,
BA
BC
=
|BA|
|BC|
•cos∠ABC
=4,由此可得
CB
BA
=-
BA
BC
=-4.
故答案為:-4
點評:本題在特殊梯形ABCD中,求向量數量積的大。乜疾榱讼蛄抗簿定理、解三角形、向量數量積的公式及其運算性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經軸對稱變換后的圖形為A′C′.
①當t>
35
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品www| 久久精品一区二区三区四区 | 亚洲精区| 亚洲黄页 | 国产视频91在线 | 7777久久| av中文字幕在线观看 | 精品一区av | 国产成人综合在线 | 青青免费在线视频 | 亚洲精品影院 | 色综合久久网 | 免费在线观看一级毛片 | 国产精品视频播放 | 国产在线精品一区 | 欧美日韩一区二区三区在线观看 | 成人在线一区二区 | 黑人精品 | 日韩aⅴ一区二区三区 | 中文字幕在线电影 | 国产精品99久久久久久久vr | 日本免费看片 | av三级在线免费观看 | 欧美性受 | 国产96精品久久久 | 黄色在线免费观看 | 久久国精品 | 午夜剧 | 国产日韩欧美一区二区在线观看 | 欧美一区二区视频 | 久久精品国产99国产精品 | 天堂一区二区三区 | 欧美日韩精品一区二区三区四区 | 成人在线一区二区三区 | 国产福利电影一区 | 午夜男人网 | 国产成人精品综合 | 一区二区在线免费观看 | 国产精品99久久免费观看 | 国产在线激情 | 久久久久无码国产精品一区 |