日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.在△ABC中,a、b、c為角A、B、C所對的三邊,已知b2+c2-a2=-bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,cos(A-C)+cosB=$\frac{\sqrt{3}}{2}$,求△ABC的面積.

分析 (1)由已知及余弦定理可求cosA=-$\frac{1}{2}$,結(jié)合范圍A∈(0,π),即可求得A的值.
(2)由已知及三角函數(shù)恒等變換的應(yīng)用可得sinAsinC=$\frac{\sqrt{3}}{4}$,進(jìn)而可求sinC=$\frac{1}{2}$,結(jié)合范圍C∈(0,$\frac{π}{3}$),可得C的值,可求B=$\frac{π}{6}$,由正弦定理解得c,利用三角形面積公式即可計算得解.

解答 解:(1)∵b2+c2-a2=-bc.
∴由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{2π}{3}$.
(2)由題意得cos(A-C)-cos(A+C)=$\frac{\sqrt{3}}{2}$,
∴sinAsinC=$\frac{\sqrt{3}}{4}$,
又∵sinA=$\frac{\sqrt{3}}{2}$,
∴sinC=$\frac{1}{2}$,
∵C∈(0,$\frac{π}{3}$),
∴C=$\frac{π}{6}$,B=$\frac{π}{6}$,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,解得c=1,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$.

點評 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,點M在線段EC上.
(Ⅰ)當(dāng)點M為EC中點時,求證:BM∥平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為$\frac{\sqrt{6}}{6}$時,求棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐S-ABCD中,底面ABCD為菱形,E、P、Q分別是棱AD、SC、AB的中點,且SE⊥平面ABCD.
(1)求證:PQ∥平面SAD;
(2)求證:平面SAC⊥平面SEQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,則使得f(x)>f(2x-3)成立的取值范圍是(  )
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.樣本容量為100的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[14,18]內(nèi)的頻數(shù)為(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若sinB=2sinA,且△ABC的面積為a2sinB,則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1-m)+f(1+m2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若已知A∩{-1,0,1}={0,1},且A∪{-2,0,2}={-2,0,1,2},則滿足上述條件的集合A共有4個.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 色黄大色黄女片免费中国 | 人人超碰在线 | 美日韩精品 | 成人三级在线 | 成人手机在线观看 | 激情久久久 | 国产精品偷乱一区二区三区 | 日韩精品视频免费播放 | 波多野吉衣一二三区乱码 | 国内精品一区二区三区 | 亚洲欧美视频 | 免费福利片 | 四虎影院在线 | 国产女人高潮毛片 | 日韩视频一区二区三区 | 中文字幕在线观看不卡 | 日韩一区二区中文字幕 | 综合av | 国产一区中文字幕 | 日韩在线免费视频 | 免费日韩视频 | 国产一区二区欧美 | 亚洲成人毛片 | 中文字幕+乱码+中文乱码91 | 欧美在线网站 | 天天摸天天爽 | 亚洲va韩国va欧美va精品 | 高清无码| 欧美视频在线一区 | 天天躁日日躁狠狠很躁 | 欧美一区二 | 青青草视频在线观看 | 欧美色综合天天久久综合精品 | 精品久久久久久久久久久 | 日本黄色片视频 | 国产精品黄 | 91色交视频 | 激情五月婷婷综合 | 黄色片一级片 | 在线不卡一区 | 黄色小视频免费观看 |