【題目】已知函數f(x)=|2x-1|+|x+m|.
(l)當m=l時,解不等式f(x)≥3;
(2)證明:對任意x∈R,2f(x)≥|m+1|-|m|.
【答案】(1){x|x≤-1或x≥1};(2)見解析
【解析】
(1)根據絕對值定義將不等式化為三個不等式組,分別求解,最后求并集,(2)根據絕對值三角不等式放縮論證.
(1)當m=1時,f(x)=|2x-1|+|x+1|,
①當x≤-1時,f(x)=-3x≥3,解得x≤-1,
②當-1<x<時,f(x)=-x+2≥3,解得x≤-1,與-1<x<
矛盾,舍去,
③當x≥時,f(x)=3x≥3,解得x≥1,
綜上,不等式f(x)<3的解集為{x|x≤-1或x≥1};
(2)2f(x)=|4x-2|+|2x+2m|=|2x-1|+|2x-1|+|2x+2m|≥|2x-1|+|2x+2m|≥|2x+2m-2x+1|
=|2m+1|=|(m+1)+m|≥|m+1|-|m|,
∴對任意x∈R,2f(x)≥|m+1|-|m|.
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓,過動點M(0,m)的直線交x軸于點N,交橢圓C于A,P(其中P在第一象限,N在橢圓內),且M是線段PN的中點,點P關于x軸的對稱點為Q,延長QM交C于點B,記直線PM,QM的斜率分別為k1,k2.
(1)當時,求k2的值;
(2)當時,求直線AB斜率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大小;
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,、
是離心率為
的橢圓
:
的左、右焦點,過
作
軸的垂線交橢圓
所得弦長為
,設
、
是橢圓
上的兩個動點,線段
的中垂線與橢圓
交于
、
兩點,線段
的中點
的橫坐標為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,平面PAC垂直圓O所在平面,直線PC與圓O所在平面所成角為60°,PA⊥PC.
(1)證明:AP⊥平面PBC
(2)求二面角P—AB一C的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點為
,
,上、下頂點為
,
,記四邊形
的內切圓為
.
(1)求圓的標準方程;
(2)已知圓的一條不與坐標軸平行的切線
交橢圓
于P,M兩點.
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com