分析:(1)根據(jù)b
n=
,a
n+1=
(a
n+
),可得b
n+1=
=
()2=>0,迭代可得數(shù)列{b
n}的通項公式;
(2)利用當(dāng)n≥2時,
an+1-1=≤(an-1),可得
a3-1≤(a2-1),
a4-1≤(a3-1),…,
an-1≤(an-1-1),以上式子累和得
Sn-a1-a2-(n-2)≤[Sn-1-a1-(n-2)],進(jìn)而利用放縮法可證S
n<n+
.
解答:(1)解:∵b
n=
.
∴b
1=
=3,
∵a
n+1=
(a
n+
),
∴b
n+1=
=
()2=>0∴
bn==…=32n-1(2)證明:當(dāng)n≥2時,
an+1-1=≤(an-1)(當(dāng)且僅當(dāng)n=2時取等號)且
a2=(a1+)=故
a3-1≤(a2-1),
a4-1≤(a3-1),…,
an-1≤(an-1-1)以上式子累和得
Sn-a1-a2-(n-2)≤[Sn-1-a1-(n-2)]∴10[S
n-a
1-a
2-(n-2)]≤S
n-1-a
1-(n-2)
∴
9Sn≤+9n-∴
Sn≤+n-<+n-=+n<+n∴S
n<n+
.得證
點評:本題以數(shù)列遞推式為載體,考查數(shù)列的通項公式,考查不等式的證明,考查放縮法的運用,有難度.