數(shù)列中,
,
(
是常數(shù),
),且
成公比不為
的等比數(shù)列.
(1)求的值;
(2)求的通項(xiàng)公式.
(1)的值為2;(2)
的通項(xiàng)公式為
.
解析試題分析:(1)由得
,
,
,再根據(jù)它們成等比數(shù)列,即可求得
的值;(2)用累加法即可求
的通項(xiàng)公式.
試題解析:(1),
,
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5f/5/p4w122.png" style="vertical-align:middle;" />,,
成等比數(shù)列,所以
,解得
或
.
當(dāng)時,
,不符合題意舍去,故
.
(2)當(dāng)時,由于
,
,……
,
所以.
又,
,故
.
當(dāng)n=1時,上式也成立,所以
考點(diǎn):等差等比數(shù)列的性質(zhì)、數(shù)列綜合應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:
;
為數(shù)表中第
行的第
個數(shù).
求第2行和第3行的通項(xiàng)公式和
;
證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于
(
)的表達(dá)式;
(3)若,
,試求一個等比數(shù)列
,使得
,且對于任意的
,均存在實(shí)數(shù)
?,當(dāng)
時,都有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
,對任意的
,
、
、
成等比數(shù)列,公比為
;
、
、
成等差數(shù)列,公差為
,且
.
(1)寫出數(shù)列的前四項(xiàng);
(2)設(shè),求數(shù)列
的通項(xiàng)公式;
(3)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若的圖像與直線
相切,并且切點(diǎn)橫坐標(biāo)依次成公差為
的等差數(shù)列.
(1)求和
的值;
(2)ABC中a、b、c分別是∠A、∠B、∠C的對邊.若
是函數(shù)
圖象的一個對稱中心,且a=4,求
ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列的前
項(xiàng)和為
,且
和
滿足:
.
(1)求的通項(xiàng)公式;
(2)設(shè),求
的前
項(xiàng)和
;
(3)在(2)的條件下,對任意,
都成立,求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正實(shí)數(shù)數(shù)列{an}中,a1=1,a2=5,且{}成等差數(shù)列.
(1)證明:數(shù)列{an}中有無窮多項(xiàng)為無理數(shù);
(2)當(dāng)n為何值時,an為整數(shù)?并求出使an<200的所有整數(shù)項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為公差不為零的等差數(shù)列,首項(xiàng)
,
的部分項(xiàng)
、
、
恰為等比數(shù)列,且
,
,
.
(1)求數(shù)列的通項(xiàng)公式
(用
表示);
(2)若數(shù)列的前
項(xiàng)和為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通項(xiàng)公式.
(2)求數(shù)列{}的前n項(xiàng)和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com