【題目】如圖,已知中,
是
的平分線,將
沿直線
翻折成
,在翻折過程中,設所成二面角
的平面角為
,
,則下列結(jié)論中成立的是( )
A.B.
C.
D.
【答案】B
【解析】
過B點作的垂線,分別交
于點M,N,連接
,由二面角的平面角的定義,知
,根據(jù)
為
的平分線,得到
,由
,得到
的關(guān)系,再通過余弦定理,
,
,結(jié)合
,得到
關(guān)系即可.
解法一:過B點作的垂線,分別交
于點M,N,連接
,如圖.
由二面角的平面角的定義,知.
又為
的平分線,則
.
在共底邊的等腰與等腰
中,
,
故.
又由余弦定理,有,
同理:,
因為且
,
則,即
,
故選:B
解法二:過B點作的垂線,分別交
于點M,N,本題可以考慮
的兩個特殊位置:
(1)翻折時初始位置,此時二面角
的平面角
與
均為平角,
,故
;
(2)翻轉(zhuǎn)180°時,
與
與
分別重合,則
.
綜合即得,
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知正△ABC邊長為3,點M,N分別是AB,AC邊上的點,AN=BM=1,如圖1所示.將△AMN沿MN折起到△PMN的位置,使線段PC長為,連接PB,如圖2所示.
(Ⅰ)求證:平面PMN⊥平面BCNM;
(Ⅱ)若點D在線段BC上,且BD=2DC,求二面角M﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,已知函數(shù)
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最小值
;
(Ⅲ)若, 求使方程
有唯一解的
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點M是棱長為2的正方體ABCD-A1B1C1D1的棱AD的中點,點P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點P到點C1的最短距離是( )
A.B.
C.1D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
,
,是自然對數(shù)的底數(shù).
(1)若曲線在點
處的切線為
,求
的值;
(2)求函數(shù)的極大值;
(3)設函數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不少于120分的有10人,統(tǒng)計成績后得到如下列聯(lián)表:
分數(shù)不少于120分 | 分數(shù)不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | 10 | ||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關(guān)”;
(2)在上述樣本中從分數(shù)不少于120分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于5小時和線上學習時間不足5小時的學生共5名,若在這5名學生中隨機抽取2人,求至少1人每周線上學習時間不足5小時的概率.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0),F1,F2為橢圓的左右焦點,過F2的直線交橢圓與A、B兩點,∠AF1B=90°,2
,則橢圓的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是以
為斜邊的等腰直角三角形,
中
,
沿著
翻折成三棱錐
的過程中,直線
與平面
所成的角均小于直線
與平面
所成的角,設二面角
,
的大小分別為
,
,則( ).
A.B.
C.存在D.
,
的大小關(guān)系不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com