科目:高中數學 來源: 題型:044
定義在實數集上的函數f(x)對任意x,yÎR有f(x+y)+f(x-y)=2f(x)f(y)且f(0)¹0.
(1)求證:f(0)=1;(2)求證:y=f(x)是偶涵數;
(3)若存在常數c使;①求證對任意xÎR有f(x+c)=-f(x)成立;②試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由
查看答案和解析>>
科目:高中數學 來源:數學教研室 題型:044
(1)求證:f(0)=1;(2)求證:y=f(x)是偶涵數;
(3)若存在常數c使;①求證對任意xÎR有f(x+c)=-f(x)成立;②試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由
查看答案和解析>>
科目:高中數學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數學 題型:044
定義域為R的函數f(x)滿足:對于任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且當x>0時f(x)<0恒成立.
(1)判斷函數f(x)的奇偶性,并證明你的結論;
(2)證明f(x)為減函數;若函數f(x)在[-3,3)上總有f(x)≤6成立,試確定f(1)應滿足的條件;
(3)解關于x的不等式f(ax2)-f(x)>
f(a2x)-f(a),(n是一個給定的自然數,a<0.)
查看答案和解析>>
科目:高中數學 來源: 題型:
設函數f(x)的定義域D關于原點對稱,0∈D,且存在常數a>0,使f(a)=1,又,
(1)寫出f(x)的一個函數解析式,并說明其符合題設條件;
(2)判斷并證明函數f(x)的奇偶性;
(3)若存在正常數T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數,T為周期;試問f(x)是不是周期函數?若是,則求出它的一個周期T;若不是,則說明理由。
查看答案和解析>>
科目:高中數學 來源:廣東省模擬題 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com