(本小題滿分13分)
已知正方體ABCD-A'B'C'D'的棱長為1,點M是棱AA'的中點,點O是對角線BD'的中點.
(Ⅰ)求證:OM為異面直線AA'和BD'的公垂線;
(Ⅱ)求二面角M-BC'-B'的大小;
(Ⅲ)求三棱錐M-OBC的體積(理科做,文科不做)
本小題主要考查異面直線、直線與平面垂直、二面角、正方體、三棱錐體積等基礎知識,并考查空間想象能力和邏輯推理能力,考查應用向量知識解決數學問題的能力。
解法一:(1)連結AC,取AC中點K,則K為BD的中點,連結OK
因為M是棱AA’的中點,點O是BD’的中點
所以AM
所以MO
由AA’⊥AK,得MO⊥AA’
因為AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’
所以AK⊥BD’
所以MO⊥BD’
又因為OM是異面直線AA’和BD’都相交
故OM為異面直線AA'和BD'的公垂線
(2)取BB’中點N,連結MN,則MN⊥平面BCC’B’
過點N作NH⊥BC’于H,連結MH
則由三垂線定理得BC’⊥MH
從而,∠MHN為二面角M-BC’-B’的平面角
MN=1,NH=Bnsin45°=
在Rt△MNH中,tan∠MHN=
故二面角M-BC’-B’的大小為arctan2
(3)易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’內
點O到平面MA’D’距離h=
VM-OBC=VM-OA’D’=VO-MA’D’=S△MA’D’h=
解法二:
以點D為坐標原點,建立如圖所示空間直角坐標系D-xyz
則A(1,0,0),B(1,1,0),C(0,1,0),A’(1,0,1),C’(0,1,1),D’(0,0,1)
(1)因為點M是棱AA’的中點,點O是BD’的中點
所以M(1,0, ),O(
,
,
)
,
=(0,0,1),
=(-1,-1,1)
=0,
+0=0
所以OM⊥AA’,OM⊥BD’
又因為OM與異面直線AA’和BD’都相交
故OM為異面直線AA'和BD'的公垂線.………………………………4分
(2)設平面BMC'的一個法向量為=(x,y,z)
=(0,-1,
),
=(-1,0,1)
即
取z=2,則x=2,y=1,從而=(2,1,2)
取平面BC'B'的一個法向量為=(0,1,0)
cos
由圖可知,二面角M-BC'-B'的平面角為銳角
故二面角M-BC'-B'的大小為arccos………………………………………………9分
(3)易知,S△OBC=S△BCD'A'=
設平面OBC的一個法向量為=(x1,y1,z1)
=(-1,-1,1),
=(-1,0,0)
即
取z1=1,得y1=1,從而=(0,1,1)
點M到平面OBC的距離d=
VM-OBC=…………………………………………12分
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區間
上的圖象.
(3)設0<x<,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為的函數
是奇函數.
(1)求的值;(2)判斷函數
的單調性;
(3)若對任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,
為
的中點。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數的表達式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數列的前
項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com