【題目】如圖1,在邊長為1的等邊三角形中,
分別是
邊上的點,
,
是
的中點,
與
交于點
,將
沿
折起,得到如圖2所示的三棱錐
,其中
.
(1) 證明://平面
;
(2) 證明:平面
;
(3) 當時,求三棱錐
的體積
.
【答案】(1)詳見解析;(2)詳見解析;(3)。
【解析】
試題分析:(1)因為三角形ABC為等邊三角形,所以AB=AC,又AD=AE,所以,則DE//BC,折疊后圖1中,DG//BF,GE//CF,又因為
,
,根據面面平行的判斷定理可知,平面DGE//平面BCF,DE
平面DGE,所以DE//平面BFC;(2)圖1中,F為BC中點,所以BC⊥AF,BF=FC=
,又因為BC=
,所以BF2+FC2=BC2,則CF⊥BF,因為AF
BF=F,根據線面垂直判定定理,所以CF⊥平面ABF;(3)由圖4可知,AF⊥DE,所以圖1中,AG⊥DG,AG⊥GE,且DG
GE=G,所以AG⊥平面DGE,所以F到平面DGE的距離等于線段GF的長,又因為AD=
,所以
,則DE=
,
,所以GF=
AF,又因為AF=
,所以GF=
,因為DE//BC,所以G為DE中點,DG=GE=
DE=
,又因為DE//BF,GE//CF,所以DG⊥GE,所以三角形DGE的面積為
,三棱錐F-DGE的體積為
。
試題解析:(1),在折疊后的三棱錐
中
也成立, ,
平面
,
平面
,
平面
;
(2)在等邊三角形中,
是
的中點,所以
①,
.
在三棱錐
中,
,
②
;
(3)由(1)可知,結合(2)可得
.
科目:高中數學 來源: 題型:
【題目】全稱命題“所有被5整除的整數都是奇數”的否定 ( )
A. 所有被5整除的整數都不是奇數 B. 所有奇數都不能被5整除
C. 存在被5整除的整數不是奇數 D. 存在奇數,不能被5整除
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知隨機變量ξ服從正態分布N(0,σ2),若P(ξ>2)=0.023,
則P(-2≤ξ≤2)=( )
A. 0.477 B. 0.628 C. 0.954 D. 0.977
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義在區間上的函數
,若存在閉區間
和常數
,使得對任意
,都有
,且對任意
,當
時,
恒成立,則稱函數
為區間
上的“平底型”函數.
(1)判斷函數和
是否為
上的“平底型”函數?
(2)若函數是區間
上的“平底型”函數,求
和
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】文科做:數列中,
且滿足
(I)求數列的通項公式;
(II)設,求
;
(III)設=
,是否存在最大的整數
,使得對任意
,均有
成立?若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數:,其中
是儀器的月產量.
(1) 將利潤表示為月產量的函數;
(2) 當月產量為何值時,公司所獲利潤最大?最大利潤為多少元? (利潤=總收益-總成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,
,
是等邊三角形.已知
,
,
.
(1)設是
上的一點,證明:平面
平面
;
(2)當點位于線段
什么位置時,
平面
?
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠用7萬元錢購買了一臺新機器,運輸安裝費用2千元,每年投保、動力消耗的費用也為2千元,每年的保養、維修、更換易損零件的費用逐年增加,第一年為2千元,第二年為3千元,第三年為4千元,依此類推,即每年增加1千元.問這臺機器最佳使用年限是多少年?并求出年平均費用的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com