(本題滿分12分)
過拋物線上不同兩點(diǎn)A、B分別作拋物線的切線相交于P點(diǎn),
(Ⅰ)求證:P點(diǎn)的軌跡為一條直線;
(Ⅱ)已知點(diǎn)F(0,1),是否存在實(shí)數(shù)使得
?
若存在,求出的值;若不存在,請說明理由.
(本小題滿分12分)
證法(一):(Ⅰ)設(shè)
由得:
………………………………3分
直線PA的方程是:即
①
同理,直線PB的方程是: ②
由①②得:∴點(diǎn)P的軌跡方程是
……6分
(Ⅱ)由(1)得:
…………………………10分
所以
故存在=1使得
…………………………………………12分
證法(二):(Ⅰ)∵直線PA、PB與拋物線相切,且
∴直線PA、PB的斜率均存在且不為0,且
設(shè)PA的直線方程是
由得:
即
…………………………3分
即直線PA的方程是:
同理可得直線PB的方程是:
由得:
故點(diǎn)P的軌跡方程是……………………………………6分
(Ⅱ)由(1)得:
………………………………10分
故存在=1使得
…………………………………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為
,公比
的等比數(shù)列,,
設(shè),數(shù)列
.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列
的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(
,
為常數(shù)),且方程
有兩個(gè)實(shí)根為
.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形
是邊長為
的正方形,
,
為
上的點(diǎn),且
⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面
的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com