【題目】已知在一次射擊預選賽中,甲、乙兩人各射擊次,兩人成績的條形統計圖如圖所示,則下列四個選項中判斷不正確的是( )
A. 甲的成績的平均數小于乙的成績的平均數
B. 甲的成績的中位數小于乙的成績的中位數
C. 甲的成績的方差大于乙的成績的方差
D. 甲的成績的極差小于乙的成績的極差
科目:高中數學 來源: 題型:
【題目】已知曲線C1: (參數θ∈R),以坐標原點O為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為
,點Q的極坐標為
.
(1)將曲線C2的極坐標方程化為直角坐標方程,并求出點Q的直角坐標;
(2)設P為曲線C1上的點,求PQ中點M到曲線C2上的點的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為鼓勵應屆畢業大學生自主創業,國家對應屆畢業大學生創業貸款有貼息優惠政策,現有應屆畢業大學生甲貸款開小型超市,初期投入為72萬元,經營后每年的總收入為50萬元,該公司第年需要付出的超市維護和工人工資等費用為
萬元,已知
為等差數列,相關信息如圖所示.
(Ⅰ)求;
(Ⅱ)該超市第幾年開始盈利?(即總收入減去成本及所有費用之差為正值)
(Ⅲ)該超市經營多少年,其年平均獲利最大?最大值是多少?(年平均獲利)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的兩個焦點為F1 , F2 , 離心率為
,點A,B在橢圓上,F1在線段AB上,且△ABF2的周長等于4
.
(1)求橢圓C的標準方程;
(2)過圓O:x2+y2=4上任意一點P作橢圓C的兩條切線PM和PN與圓O交于點M,N,求△PMN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個游戲項目,要參與游戲,均需每次先付費元(不返還),游戲甲有
種結果:可能獲得
元,可能獲得
元,可能獲得
元,這三種情況的概率分別為
,
,
;游戲乙有
種結果:可能獲得
元,可能獲得
元,這兩種情況的概率均為
.
(1)某人花元參與游戲甲兩次,用
表示該人參加游戲甲的收益(收益=參與游戲獲得錢數-付費錢數),求
的概率分布及期望;
(2)用表示某人參加
次游戲乙的收益,
為任意正整數,求證:
的期望為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=sinx的圖象向右平移 個單位,再將所得函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數y=sin(ωx+φ),(ω>0,|φ|<
)的圖象,則( )
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著人們生活水平的不斷提高,家庭理財越來越引起人們的重視.某一調查機構隨機調查了5個家庭的月收入與月理財支出(單位:元)的情況,如下表所示:
月收入 | 8 | 10 | 9 | 7 | 11 |
月理財支出 |
(I)在下面的坐標系中畫出這5組數據的散點圖;
(II)根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(III)根據(II)的結果,預測當一個家庭的月收入為元時,月理財支出大約是多少元?
(附:回歸直線方程中,
,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,平面
,
平面
,
,且
,
是
的中點.
()求證:
.
()若
為線段
上一點,且
,求證:
平面
.
()在棱
上是否存在一點
,使得直線
與平面
所成的角為
.若存在,指出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖像兩相鄰對稱軸之間的距離是
,若將
的圖像先向右平移
個單位,再向上平移
個單位,所得函數
為奇函數.
(1)求的解析式;
(2)求的對稱軸及單調區間;
(3)若對任意,
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com