【題目】某人事部門對參加某次專業技術考試的100人的成績進行了統計,繪制的頻率分布直方圖如圖所示.規定80分以上者晉級成功,否則晉級失敗(滿分為100分).
(1)求圖中的值;
(2)估計該次考試的平均分 (同一組中的數據用該組的區間中點值代表);
(3)根據已知條件完成下面2×2列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關.
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(Ⅰ);(Ⅱ)
分;(Ⅲ)見解析.
【解析】
(1)由頻率和為1,列方程求出a的值;(2)利用直方圖中各小組中點乘以對應的頻率,求和得平均分;(3)根據題意填寫,計算觀測值K2,對照臨界值得出結論.
(1)由頻率分布直方圖各小長方形面積總和為1,可知
,故
.
(2) 由頻率分布直方圖知各小組依次是,
其中點分別為對應的頻率分別為
,
故可估計平均分
(分)
(3)由頻率分布直方圖知,晉級成功的頻率為,
故晉級成功的人數為(人),故填表如下
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | 34 | 50 |
女 | 9 | 41 | 50 |
合計 | 25 | 75 | 100 |
假設“晉級成功”與性別無關,
根據上表數據代入公式可得,
所以有超過85%的把握認為“晉級成功”與性別有關.
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an=3n﹣2,f(n)= +
+…+
,g(n)=f(n2)﹣f(n﹣1),n∈N* .
(1)求證:g(2)> ;
(2)求證:當n≥3時,g(n)> .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某社區居民有無收看“奧運會開幕式”,某記者分別從某社區60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進行調查,若在60~70歲這個年齡段中抽查了8人,那么x為( ) .
A. 90 B. 120 C. 180 D. 200
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在科普知識競賽前的培訓活動中,將甲、乙兩名學生的6次培訓成績(百分制)制成如圖所示的莖葉圖:
(1)若從甲、乙兩名學生中選擇1人參加該知識競賽,你會選哪位?請運用統計學的知識說明理由;
(2)若從學生甲的6次培訓成績中隨機選擇2個,記選到的分數超過87分的個數為ξ,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=xln(ax)(a>0)
(1)設F(x)= 2+f'(x),討論函數F(x)的單調性;
(2)過兩點A(x1 , f′(x1)),B(x2f′(x2))(x1<x2)的直線的斜率為k,求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數x的取值范圍;
(2)若p是q的充分不必要條件,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)在R上為增函數,且f(1)= ,若實數a滿足f(loga3)﹣f(loga
)≤1,則實數a的取值范圍為( )
A.0<a≤
B.a≤
C. ≤a<1
D.a≥3或0<a<1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓的圓心在
軸上,并且過
兩點.
(1)求圓的方程;
(2)設直線與圓
交于
兩點,那么以
為直徑的圓能否經過原點,若能,請求出直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,E,F分別是BB1,CD的中點.
(1)證明:平面AED⊥平面A1FD1;
(2)在AE上求一點M,使得A1M⊥平面DAE.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com