日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

對于問題:“已知兩個正數(shù)x,y滿足x+y=2,求的最小值”,給出如下一種解法:
Qx+y=2,∴==
Qx>0,y>0,∴,∴
當(dāng)且僅當(dāng),即時(shí),取最小值
參考上述解法,已知A,B,C是△ABC的三個內(nèi)角,則的最小值為   
【答案】分析:參考上述解法,根據(jù)題意可知A+B+C=π設(shè)A=α,B+C=β則 α+β=π,=1,將乘以1化簡整理,利用基本不等式即可求出最小值,注意等號成立的條件.
解答:解:A+B+C=π,即A+B+C=π,設(shè)A=α,B+C=β,則 α+β=π,=1,
參考上述解法,則==()(α+β) =(10++)≥(10+6),
當(dāng)且僅當(dāng) =,即3α=β時(shí)等號成立.
故答案為:
點(diǎn)評:本小題主要考查類比推理、基本不等式求最值,解題的關(guān)鍵是等號成立的條件,中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于問題:“已知兩個正數(shù)x,y滿足x+y=2,求
1
x
+
4
y
的最小值”,給出如下一種解法:
Qx+y=2,∴
1
x
+
4
y
=
1
2
(x+y)(
1
x
+
4
y
)
=
1
2
(5+
y
x
+
4x
y
)

Qx>0,y>0,∴
y
x
+
4x
y
≥2
y
x
4x
y
=4
,∴
1
x
+
4
y
1
2
(5+4)=
9
2

當(dāng)且僅當(dāng)
y
x
=
4x
y
x+y=2
,即
x=
2
3
y=
4
3
時(shí),
1
x
+
4
y
取最小值
9
2

參考上述解法,已知A,B,C是△ABC的三個內(nèi)角,則
1
A
+
9
B+C
的最小值為
16
π
16
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實(shí)數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)試判斷函數(shù)f(x)=log
12
(x-1)
是否為(3,+∞)上的周期為1的2級類增周期函數(shù)?并說明理由;
(2)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍.
(Ⅱ)已知當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域?yàn)橐粋閉區(qū)間,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于問題:“已知兩個正數(shù)x,y滿足x+y=2,求
1
x
+
4
y
的最小值”,給出如下一種解法:
Qx+y=2,∴
1
x
+
4
y
=
1
2
(x+y)(
1
x
+
4
y
)
=
1
2
(5+
y
x
+
4x
y
)

Qx>0,y>0,∴
y
x
+
4x
y
≥2
y
x
4x
y
=4
,∴
1
x
+
4
y
1
2
(5+4)=
9
2

當(dāng)且僅當(dāng)
y
x
=
4x
y
x+y=2
,即
x=
2
3
y=
4
3
時(shí),
1
x
+
4
y
取最小值
9
2

參考上述解法,已知A,B,C是△ABC的三個內(nèi)角,則
1
A
+
9
B+C
的最小值為______.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 亚洲午夜精品视频 | 欧美v在线 | 国产精品不卡顿 | 久久精品欧美一区二区三区不卡 | 精品欧美一区二区三区久久久 | 97超碰人人 | 国产高清成人久久 | 久久成人精品视频 | 欧美精品网站 | 亚洲精品99 | 日本久久www成人免 亚洲成人av | 久久九| 久久久久久久久一区 | 91免费看片网站 | 日韩成人免费 | 久久99深爱久久99精品 | 这里只有精品在线 | 国产精品一区av | 免费看的黄网站 | 九九九久久国产免费 | 亚洲美女网站 | 伊人超碰 | 亚洲h视频在线观看 | 欧美a区| 中文字幕在线看 | 欧美成人综合视频 | 国产精品视频播放 | 欧美自拍视频在线观看 | 黄色片网址 | 日韩视频一区二区三区在线观看 | 97综合色| 久久男人 | 国产精品久久久久久一级毛片 | 久久99视频 | 亚洲国产精品久久久久久 | 另类久久 | 777kkk999成人ww| 日韩一区二区在线免费观看 | 欧美日韩黄色一级片 | av在线国产精品 | 日韩有码一区二区三区 |