已知橢圓的一個頂點為,焦點在
軸上,中心在原點.若右焦點到直線
的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點
.當
時,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
年
月
日
時
分
秒“嫦娥二號”探月衛星由長征三號丙運載火箭送入近地點高度約
公里、遠地點高度約
萬公里的直接奔月橢圓(地球球心
為一個焦點)軌道Ⅰ飛行。當衛星到達月球附近的特定位置時,實施近月制動及軌道調整,衛星變軌進入遠月面
公里、近月面
公里(月球球心
為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛星再次擇機變軌進入以
為圓心、距月面
公里的圓形軌道Ⅲ繞月飛行,并開展相關技術試驗和科學探測。已知地球半徑約為
公里,月球半徑約為
公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大小;
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標準方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知直線與拋物線
相切于點
)且與
軸交于點
為坐標原點,定點B的坐標為
.
(1)若動點滿足
|
=
,求點
的軌跡
.
(2)若過點的直線
(斜率不等于零)與(1)中的軌跡
交于不同的兩點
,試求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓(a>b>0)的焦距為4,且與橢圓
有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數列.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點是直角坐標平面內的動點,點
到直線
(
是正常數)的距離為
,到點
的距離為
,且
1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線
的垂線,對應的垂足分別為
,求證
=
;
(3)記,
,
(A、B、是(2)中的點),
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓E:的離心率為
,右焦點為F,且橢圓E上的點到點F距離的最小值為2.
(1)求橢圓E的方程;
(2)設橢圓E的左、右頂點分別為A,B,過點A的直線l與橢圓E及直線x=8分別相交于點M,N.
(。┊斶^A,F,N三點的圓半徑最小時,求這個圓的方程;
(ⅱ)若,求△ABM的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓E:(
)離心率為
,上頂點M,右頂點N,直線MN與圓
相切,斜率為k的直線l經過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.
(1)求E的方程;
(2)若點G(m,0)且| GA|=| GB|,,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com