【題目】用數學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為
,其中
為參數,
,再以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,其中
,
,直線
與曲線
交于
兩點.
(1)求的值;
(2)已知點,且
,求直線
的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+bx2的圖象經過點M(1,4),曲線在點M處的切線恰好與直線x+9y=0垂直.
(1)求實數a,b的值;
(2)若函數f(x)在區間[m,m+1]上單調遞增,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有4名男生,3名女生排成一排:
(1)從中選出3人排成一排,有多少種排法?
(2)若男生甲不站排頭,女生乙不站在排尾,則有多少種不同的排法?
(3)要求女生必須站在一起,則有多少種不同的排法?
(4)若3名女生互不相鄰,則有多少種不同的排法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x|+ ﹣1(x≠0)
(1)當m=1時,判斷f(x)在(﹣∞,0)的單調性,并用定義證明;
(2)若對任意x∈(1,+∞),不等式 f(log2x)>0恒成立,求m的取值范圍.
(3)討論f(x)零點的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自然數按如圖的規律排列:則上起第2007行左起2008列的數為( )
A.20072
B.20082
C.2006×2007
D.2007×2008
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,將自然數按如下規則“放置”在平面直角坐標系中,使其滿足條件:①每個自然數“放置”在一個“整點”(橫縱坐標均為整數的點)上;②0在原點,1在(0,1)點,2在(1,1)點,3在(1,0)點,4在(1,﹣1)點,5在(0,﹣1)點,…,即所有自然數按順時針“纏繞”在以“0”為中心的“樁”上,則放置數字(2n+1)2 , n∈N*的整點坐標是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為(0,+∞)的函數f(x)滿足:(1)對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當x∈(1,2]時,f(x)=2﹣x. 給出如下結論:
①對任意m∈Z,有f(2m)=0;
②函數f(x)的值域為[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正確的有( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com