【題目】△ABC在內角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.
【答案】
(1)解:由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,
∵sinA=sin(B+C)=sinBcosC+cosBsinC②,
∴sinB=cosB,即tanB=1,
∵B為三角形的內角,
∴B= ;
(2)解:S△ABC= acsinB=
ac,
由已知及余弦定理得:4=a2+c2﹣2accos ≥2ac﹣2ac×
,
整理得:ac≤ ,當且僅當a=c時,等號成立,
則△ABC面積的最大值為 ×
×
=
×
×(2+
)=
+1.
【解析】(1)已知等式利用正弦定理化簡,再利用兩角和與差的正弦函數公式及誘導公式變形,求出tanB的值,由B為三角形的內角,利用特殊角的三角函數值即可求出B的度數;(2)利用三角形的面積公式表示出三角形ABC的面積,把sinB的值代入,得到三角形面積最大即為ac最大,利用余弦定理列出關系式,再利用基本不等式求出ac的最大值,即可得到面積的最大值.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:
;
;
.
科目:高中數學 來源: 題型:
【題目】某數學興趣小組共有12位同學,下圖是他們某次數學競賽成績(滿分100分)的莖葉圖,
其中有一個數字模糊不清,圖中用表示,規定成績不低于80分為優秀.
(1)已知該12位同學競賽成績的中位數為78,求圖中的值;
(2)從該12位同學中隨機選3位同學,進行競賽試卷分析,
設其中成績優秀的人數為,求
的分布列及數學期望與方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時費用為16.9萬元,每年應交付保險費、養路費及汽油費共1.2萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.
(I)設該輛轎車使用n年的總費用(包括購買費用、保險費、養路費、汽油費及維修費)為f(n),求f(n)的表達式;
(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣﹣4;坐標系與參數方程
已知動點P,Q都在曲線C: 上,對應參數分別為β=α與β=2α(0<α<2π),M為PQ的中點.
(1)求M的軌跡的參數方程
(2)將M到坐標原點的距離d表示為α的函數,并判斷M的軌跡是否過坐標原點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調查,銷售單價x和銷售量y之間的一組數據如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據1至5月份的數據,求出y關于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com