【題目】已知函數的圖象關于原點對稱,其中
為常數.
(1)求的值;
(2)當時,
恒成立,求實數
的取值范圍;
(3)若關于的方程
在
上有解,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若對x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,則實數a的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】P為圓C1:x2+y2=9上任意一點,Q為圓C2:x2+y2=25上任意一點,PQ中點組成的區域為M,在C2內部任取一點,則該點落在區域M上的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= .
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數單調性定義證明:f(x)在(1,+∞)上是增函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人要對C處進行考察,甲在A處,乙在B處,基地在O處,此時∠AOB=90°,測得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如圖所示,試問甲、乙兩人應以什么方向走,才能使兩人的行程之和最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= , ①若f(a)=14,求a的值
②在平面直角坐標系中,作出函數y=f(x)的草圖.(需標注函數圖象與坐標軸交點處所表示的實數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點M,N分別為AD,BC的中點,則異面直線AN,CM所成的角的余弦值是( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E是PD的中點.
(1)證明:PB∥平面AEC;
(2)設AP=1,AD= ,三棱錐P﹣ABD的體積V=
,求A到平面PBC的距離.
(3)在(2)的條件下求直線AP與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在由圓O:x2+y2=1和橢圓C: =1(a>1)構成的“眼形”結構中,已知橢圓的離心率為
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
=
,若存在,求此時直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com