【題目】設是定義在R上的函數,對任意的
,恒有
,且當
時,
.
(1)求的值;
(2)求證:對任意,恒有
.
(3)求證:在R上是減函數.
【答案】(1);
(2)證明見解析;
(3)證明見解析;
【解析】
(1)應用取特殊值法.令,根據當
時,
,可以求出
的值;
(2)當時,應用
,再根據當
時,
,可以證明此時
,再結合(1)的結論,可以證明對任意
,恒有
.
(3)運用定義法證明在R上是減函數.在證明過程中結合(2)中的結論
,和已知當
時,
,這一條件.
(1) 令,有
,當
時,
,所以有
,于是有
;
(2)當時,有
,因為
,所以
,已知當
時,
,所以
,由(1)可知
,所以有
;
已知當時,
;
由(1)可知,故對任意
,恒有
;
(3)設且
,所以有
,而已知當
時,
,因此有
,而
,由(2)的證明過程可知:
,
于是由可得
,所以有
,根據(2)的性質可知:
,所以有
,因此
在R上是減函數.
科目:高中數學 來源: 題型:
【題目】小張在淘寶網上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網上的其它網店,發現:商店以30元每條的價格銷售,平均每日銷售量為10條;
商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量
(條)是售價
(元)
的一次函數,且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤(元)關于售價
(元)
的函數關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤-總管理、倉儲等費用)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十一黃金小長假期間,某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿。當每個房間每天的房價每增加10元時,就會有一個房間空閑。賓館需對游客居住的每個房間每天支出20元的各種費用(人工費,消耗費用等等)。受市場調控,每個房間每天的房價不得高于340元。設每個房間的房價每天增加x元(x為10的正整數倍)。
(1) 設一天訂住的房間數為y,直接寫出y與x的函數關系式及自變量x的取值范圍;
(2) 設賓館一天的利潤為w元,求w與x的函數關系式;
(3) 一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據條件求下列各函數的解析式:
(1)已知函數f(x+1)=3x+2,則f(x)的解析式;
(2)已知是一次函數,且滿足
,求
的解析式;
(3)已知滿足
,求
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線是拋物線
的準線,直線
,且
與拋物線
沒有公共點,動點
在拋物線
上,點
到直線
和
的距離之和的最小值等于2.
(Ⅰ)求拋物線的方程;
(Ⅱ)點在直線
上運動,過點
做拋物線
的兩條切線,切點分別為
,在平面內是否存在定點
,使得
恒成立?若存在,請求出定點
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在[-1,1]上的奇函數,當x∈[-1,0]時,函數的解析式為f(x)= (a∈R).
(1)試求a的值;
(2)寫出f(x)在[0,1]上的解析式;
(3)求f(x)在[0,1]上的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com