A. | f(1)<ef(0),f(2 016)>e2016f(0) | B. | f(1)>ef(0),f(2 016)>e2016f(0) | ||
C. | f(1)>ef(0),f(2 016)<e2016f(0) | D. | f(1)<ef(0),f(2 016)<e2016f(0) |
分析 構造函數g(x)=$\frac{f(x)}{{e}^{x}}$,利用導數判斷其單調性即可得出.
解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0.
∴函數g(x)在R上單調遞減.
∴g(1)<g(0),g(2013)<g(0).
即 $\frac{f(1)}{e}$<$\frac{f(0)}{1}$,$\frac{f(2016)}{{e}^{2016}}$<$\frac{f(0)}{{e}^{0}}$,
化為f(1)<ef(0),f(2016)<e2016f(0).
故選:D.
點評 本題是一個知識點交匯的綜合題,考查綜合運用函數思想解題的能力.恰當構造函數g(x)=$\frac{f(x)}{{e}^{x}}$,利用導數判斷其單調性是解題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{96}{125}$ | B. | $\frac{48}{125}$ | C. | $\frac{36}{125}$ | D. | $\frac{24}{125}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①②③ | B. | ①③④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com