【題目】已知函數為奇函數.
(1)求a的值,并證明是R上的增函數;
(2)若關于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實數k的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+alnx.
(1)若a=﹣1,求函數f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數f(x)在[1,e]上的最值;
(3)若a=1,求證:在區間[1,+∞)上,函數f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是
A. 對分類變量X與Y,隨機變量K2的觀測值k越大,則判斷“X與Y有關系”的把握程度越小
B. 在回歸直線方程=0.2x+0.8中,當解釋變量x每增加1個單位時,預報變量
平均增加0.2個單位
C. 兩個隨機變量的線性相關性越強,則相關系數的絕對值就越接近于1
D. 回歸直線過樣本點的中心(,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某影院共有1000個座位,票價不分等次,根據該影院的經營經驗,當每張票價不超過10元時,票可全部售出,當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院一個合適的票價,符合的基本條件是:
①為了方便找零和算賬,票價定為1元的整數倍;
②影院放映一場電影的成本費為5750元,票房收入必須高于成本支出.
(1)設定價為(
)元,凈收入為
元,求
關于
的表達式;
(2)每張票價定為多少元時,放映一場的凈收入最多?此時放映一場的凈收入為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究某種圖書每冊的成本費(元)與印刷數
(千冊)的關系,收集了一些數據并作了初步處理,得到了下面的散點圖及一些統計量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中,
.
(1)根據散點圖判斷: 與
哪一個更適宜作為每冊成本費
(元)與印刷數
(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于
的回歸方程(回歸系數的結果精確到0.01);
(3)若每冊書定價為10元,則至少應該印刷多少冊才能使銷售利潤不低于78840元?(假設能夠全部售出,結果精確到1)
(附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(限定
).
(1)寫出曲線的極坐標方程,并求
與
交點的極坐標;
(2)射線與曲線
與
分別交于點
(
異于原點),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為0-25(分貝),并規定測試值在區間
為非常優秀,測試值在區間
為優秀.某班50名同學都進行了聽力測試,所得測試值制成頻率分布直方圖:
(Ⅰ)現從聽力等級為的同學中任意抽取出4人,記聽力非常優秀的同學人數為
,求
的分布列與數學期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個更高級別的聽力測試,測試規則如下:四個音叉的發生情況不同,由強到弱的次序分別為1,2,3,4.測試前將音叉隨機排列,被測試的同學依次聽完后給四個音叉按發音的強弱標出一組序號,
,
,
(其中
,
,
,
為1,2,3,4的一個排列).若
為兩次排序偏離程度的一種描述,
,求
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
分別為左,右焦點,
分別為左,右頂點,D為上頂點,原點
到直線
的距離為
.設點
在第一象限,縱坐標為t,且
軸,連接
交橢圓于點
.
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形
的面積,求直線
的方程;
(理)求過點的圓方程(結果用t表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com