【答案】
分析:(1)用數學歸納法證明:①當n=1時,2
n+2•3
n+5n-4=8×3+5-4=25,能被25整除;②假設n=k時,2
k+2•3
k+5k-4能被25整除,由此導出當n=k+1時,2
k+3•3
k+1+5(k+1)-4能被25整除即可.
(2))由

=

=

,能夠證明


=

.
解答:證明:(1)用數學歸納法證明:
①當n=1時,2
n+2•3
n+5n-4=8×3+5-4=25,能被25整除,成立;
②假設n=k時,成立,即2
k+2•3
k+5k-4能被25整除,
則當n=k+1時,2
k+3•3
k+1+5(k+1)-4=6(2
k+2•3
k)+5k+5-4
=(2
k+2•3
k+5k-4)+5(2
k+2•3
k)+5
=(2
k+2•3
k+5k-4)+20•6
k+5,
∵2
k+2•3
k+5k-4能被5整除,20•6
k+5能被25整除,
∴(2
k+2•3
k+5k-4)+20•6
k+5能被25整除,即n=k+1時成立.
由①②知2
n+2•3
n+5n-4能被25整除.
(2)∵

=

=

=

,
∴


=

[

-

+

+…+(-1)
nC

],
當n為奇數時,

-

+

+…+(-1)
nC

=(

)-(

)
=

=1.
當n為偶數時,

-

+

+…+(-1)
nC

=(

+

+…+

)+(

+

+…+C

=

=1.
∴

[

-

+

+…+(-1)
nC

]=

.
∴

.
點評:本題考查數學歸納法的應用,考查二項式定理的應用.解題時要認真審題,仔細分析組合數性質,注意合理地進行等價轉化.