日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調減區間;
(2)證明:對任意實數0<x1<x2<1,關于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數解
(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數f(x)是在閉區間[a,b]上連續不斷的函數,且在區間(a,b)內導數都存在,則在(a,b)內至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學過的指、對數函數,正、余弦函數等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數的連續性和可導性).
分析:(1)先對函數f(x)進行求導,又根據f'(2)=0可得到關于m的代數式.再將m的代數式n代入函數f(x)中消去n,可得f'(x)=3mx2-6mx,當f'(x)>0時x的取值區間為所求.
(2)由于
f(x2)-f(x1)
x2-x1
=m(x12+x22+x1x2-3x1-3x2)從而f′(x)-
f(x2)-f(x1)
x2-x1
=0
,可化為3x2-6x-x12-x22-x1x2+3x1+3x2=0,令h(x)=3x2-6x-x12-x22-x1x2+3x1+3x2,計算則h(x1)h(x2)<0,根據零點存在定理得h(x)=0在區間(x1,x2)內必有解,從而得到證明;
(3)令g(x)=lnx,x∈(a,b),則g(x)符合拉格朗日中值定理的條件,即存在x0∈(a,b),使g′(x0)=
g(b)-g(a)
b-a
=
lnb-lna
b-a
,由于函數g′(x)=
1
x
的性質即可證得結果.
解答:解:(1)因為f'(x)=3mx2+2nx,------(1分)
由已知有f'(2)=0,所以3m+n=0即n=-3m------(2分)
即f'(x)=3mx2-6mx,由f'(x)>0知mx(x-2)>0.
當m>0時得x<0或x>2,f(x)的減區間為(0,2);-----(3分)
當m<0時得:0<x<2,f(x)的減區間為(-∞,0)和(2,+∞);-----(4分)
綜上所述:當m>0時,f(x)的減區間為(0,2);
當m<0時,f(x)的減區間為(-∞,0)和(2,+∞);-----(5分)
(2)∵
f(x2)-f(x1)
x2-x1
=m(x12+x22+x1x2-3x1-3x2),------------(6分)
f′(x)-
f(x2)-f(x1)
x2-x1
=0

可化為3x2-6x-x12-x22-x1x2+3x1+3x2=0,令h(x)=3x2-6x-x12-x22-x1x2+3x1+3x2-------(7分)
則h(x1)=(x1-x2)(2x1+x2-3),h(x2)=(x2-x1)(x1+2x2-3),
即h(x1)h(x2)=-(x1-x22(2x1+x2-3)(x1+2x2-3)又因為0<x1<x2<1,所以(2x1+x2-3)<0,(x1+2x2-3)<0,即h(x1)h(x2)<0,-----------(8分)
故h(x)=0在區間(x1,x2)內必有解,
即關于x的方程f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數解-----(9分)
(3)令g(x)=lnx,x∈(a,b),-----------(10分)
則g(x)符合拉格朗日中值定理的條件,即存在x0∈(a,b),
使g′(x0)=
g(b)-g(a)
b-a
=
lnb-lna
b-a
-----------(11分)
因為g′(x)=
1
x
,由x∈(a,b),0<a<b可知g′(x)∈(
1
b
1
a
),b-a>0-----(12分)
1
b
 <g′(x0)=
g(b)-g(a)
b-a
=
lnb-lna
b-a
=
ln
b
a
b-a
1
a

b-a
b
<ln
b
a
b-a
a
-----(14分)
點評:本小題主要考查導數的運算、利用導數研究曲線上某點切線方程、不等式的解法\拉格朗日中值定理等基礎知識,考查運算求解能力,考查化歸與轉化思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=m•2x+t的圖象經過點A(1,1)、B(2,3)及C(n,Sn),Sn為數列{an}的前n項和,n∈N*
(1)求Sn及an
(2)若數列{cn}滿足cn=6nan-n,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關于點A(0,1)對稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3,當ω最大時,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評分)
(一):在極坐標系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2

(二):已知函數f(x)=m-|x-2|,m∈R,當不等式f(x+2)≥0的解集為[-2,2]時,實數m的值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色成人免费视频 | 黄色三级网站 | 黄色大片免费在线观看 | 国产香蕉av| 日本少妇中文字幕 | av网站在线免费观看 | 亚洲久久久久久 | aaaaaa毛片| 美女视频一区二区 | 国产午夜一区二区 | 国产福利在线播放 | 艳妇乳肉亭妇荡乳av | 国产黄色精品 | 中文字幕在线免费播放 | 另类小说第一草 | 成人在线免费观看视频 | 九九精品免费视频 | 亚洲狠狠干 | 综合网伊人 | 亚洲天堂国产 | 日韩av在线免费看 | 免费av一区二区 | h视频在线播放 | 99热在线观看 | 成人h片在线观看 | 午夜成人在线视频 | av网在线| 亚洲自拍偷拍一区 | 国产日韩欧美在线 | 精品国产aⅴ麻豆 | 中文字幕av一区二区三区 | 三级黄色网址 | 国产精彩视频 | 国产一级二级视频 | 99国产在线视频 | 精品欧美一区二区三区久久久 | av免费观看网址 | 婷婷俺也去 | 国产精品久久久久久中文字 | 欧美日韩在线不卡 | 久久精品区|