日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對稱軸間的距離為2,則f(1)+f(2)+f(3)+…+f(100)=
 
分析:先將原函數用降冪公式轉化為:f(x)=
A
2
cos(2ωx+2?)+
A
2
+1,求出函數的A,T,ω,通過f(x)的圖象在y軸上的截距為2,求出φ,得到函數的表達式,然后求出所求的值.
解答:解:將原函數f(x)=Acos2(ωx+?)+1轉化為:f(x)=
A
2
cos(2ωx+2?)+
A
2
+1
相鄰兩對稱軸間的距離為2可知周期為:4,則2ω=
4
=
π
2
,ω=
π
4

由最大值為3,可知A=2
又∵圖象經過點(0,2),
∴cos2?=0
∴2∅=kπ+
π
2

∴f(x)=cos(
π
2
x+kπ+
π
2
)+2=2±sin(
π
2
x)
∵f(1)=2+1,f(2)=0+2,f(3)=-1+2,f(4)=0+2…
f(1)+f(2)+f(3)+…+f(2010)=502×8+5=4021
或f(1)=2-1,f(2)=0+2,f(3)=1+2,f(4)=0+2…
f(1)+f(2)+f(3)+…+f(2010)=502×8+3=4019
故答案為:4021或4019
點評:本題是基礎題,考查三角函數的表達式的求法,函數的值的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美性一区二区三区 | 国产欧美在线 | 欧美日韩精品一区二区三区蜜桃 | 国产欧美精品一区二区 | 欧美一区二区大片 | 色综合天天 | 99九九久久| 国产在线不卡观看 | 91麻豆精品国产91久久久久久久久 | 99精品全国免费观看视频软件 | 国产精品揄拍一区二区久久国内亚洲精 | 视频精品一区二区三区 | 亚州中文字幕蜜桃视频 | 久久精品国产亚洲 | 草逼导航 | 九九导航| 三级av | 成人一级视频在线观看 | 欧美日韩一区二区中文字幕 | 国产高清精品一区 | 欧美在线网站 | 日日日日日 | 99精品国产在热久久 | 狠狠综合久久av一区二区老牛 | 午夜一级毛片 | 欧美日韩一区二区视频在线观看 | 日韩免费高清视频 | 日韩国产高清在线 | 日韩欧美中文在线 | 欧美福利 | 免费观看黄色大片 | 天堂在线免费视频 | 亚洲精品久久久 | 日韩免费一区 | 亚洲国产精华液网站w | 嫩草网站入口 | 国产精品久久久久久久久久久久久久久久久 | 欧美视频网站 | 亚洲精品福利视频 | 国产精品视频一区二区免费不卡 | 午夜精品久久久 |