(本題滿分14分)已知數列中,
,
.
⑴ 求出數列的通項公式;
⑵ 設,求
的最大值。
(1);(2)
。
解析試題分析:(1)本試題主要是利用遞推關系式得到是以2為首項,1為公差的等差數列,進而得到通項公式。(2)利用第一問的結論,結合裂項法求和得到bn,求解其最值。
解:(1)∵
∴是以2為首項,1為公差的等差數列…2分
∴ …………5分
∴, ∴數列
的通項公式為
………6分
(2) ………10分
令,則
, 當
恒成立
∴ 在
上是增函數,故當
時,
…13分
即當時,
………14分
另解:
∴ 數列是單調遞減數列,∴
考點:本試題主要考查了等差數列的概念和數列裂項求和的運用。
點評:解決該試題的關鍵是能根據已知的遞推關系,結合等差數列的定義得到數列an的通項公式,進而得到anan+1的通項公式,采用裂項法得到和式。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知數列{ an}的前n項和為Sn,且Sn=2an-l;數列{bn}滿足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)求數列的前n項和T.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
等比數列中,
,
,
分別是下表第一、二、三行中的某一個數,且
,
,
中的任何兩個數不在下表的同一列.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com