(12分)已知

(1)求函數(shù)

在

上的最小值;
(2)對(duì)一切

恒成立,求實(shí)數(shù)

的取值范圍.
(1)

(2)a的范圍是(-∞,4]。
(1)求導(dǎo),利用導(dǎo)數(shù)對(duì)t的范圍進(jìn)行分類討論求最值.
(2)本小題實(shí)質(zhì)是

在

上恒成立,進(jìn)一步轉(zhuǎn)化為

在

上恒成立,然后構(gòu)造函數(shù)

利用導(dǎo)數(shù)研究h(x)的最小值即可.
(1)

當(dāng)

單調(diào)遞減
當(dāng)

單調(diào)遞增 ∵
∴1°

即

時(shí)

2°

時(shí)

是遞增的 ∴
故

(2)

則

設(shè)
則

遞增

遞減
∴

故所求a的范圍是(-∞,4]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)函數(shù)

則

的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)

為一次函數(shù),其圖象經(jīng)過點(diǎn)

,且

,則函數(shù)

的
解析式為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)

,二次函數(shù)

的圖像可能是




A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)

的單調(diào)遞增區(qū)間是
,
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知二次函數(shù)

.
(1)若

,

,解關(guān)于x不等式

;
(2)若f(x)的最小值為0,且A.<b,設(shè)

,請(qǐng)把

表示成關(guān)于t的函數(shù)g(t),并求g(t)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知二次函數(shù)

為整數(shù))且關(guān)于

的方程

在區(qū)間

內(nèi)有兩個(gè)不同的實(shí)根,(1)求整數(shù)

的值;(2)若

時(shí),總有

,求

的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若

,則下列判斷正確的是( )
查看答案和解析>>