日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.
求證:(1)MN∥平面PAD;
(2)MN⊥CD;
(3)當∠PDA=45°,求證:MN⊥平面PCD.

【答案】分析:(1)證明取PD的中點Q,連接NQ,證明NQ∥MA,NQ=MA,從而四邊形MNQA為平行四邊形,MN∥PQ,再根據直線和平面平行的判定定理證得 MN∥平面PAD.
(2)先證明PA⊥CD,CD⊥AD從而證明CD⊥平面PAD.根據AQ在平面PAD內,可得CD⊥AQ,從而CD⊥MN.
(3)證明:當∠PDA=45°時,△PAD為等腰直角三角形,得到AQ⊥PD,再由CD⊥AQ,可得AQ⊥平面PCD,從而得到 MN⊥平面PCD.
解答:解:(1)證明:∵四邊形ABCD為矩形,M、N分別是AB、PC的中點,再取PD的中點Q,連接NQ,
則有NQ∥,且NQ=.同理可得 MA∥,且 MA=
∴NQ∥MA,NQ=MA.  故四邊形MNQA為平行四邊形,∴MN∥PQ.
而AQ在平面PAD內,MN不在平面PAD內,∴MN∥平面PAD.
(2)證明:再由PA⊥平面ABCD可得,PA⊥CD,再由四邊形ABCD為矩形,可得CD⊥AD.
這樣,CD垂直于平面PAD內的兩條相交直線,故CD⊥平面PAD. 而AQ在平面PAD內,∴CD⊥AQ,∴CD⊥MN.
(3)證明:當∠PDA=45°時,△PAD為等腰直角三角形,∴AQ⊥PD.
再由CD⊥AQ,可得AQ⊥平面PCD,∴MN⊥平面PCD.
點評:本題考查證明線面平行、線線垂直、線面垂直的方法,直線和平面平行的判定、直線和平面垂直的判定,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,三棱錐P-ABC中,已知PA⊥平面ABC,PA=3,PB=PC=BC=6,求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求點D到平面ABC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•徐匯區一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分別是BC,AP的中點.
(1)求異面直線AC與ED所成的角的大小;
(2)求△PDE繞直線PA旋轉一周所構成的旋轉體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•徐匯區一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中點.
(1)求PD與平面PAC所成的角的大小;
(2)求△PDB繞直線PA旋轉一周所構成的旋轉體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鹽城三模)如圖,三棱錐P-ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點.
(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若平面ADE⊥平面PBC,求PA的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日精品 | 一区二区三区在线播放 | 美日韩免费视频 | 国产福利在线播放麻豆 | 九九色九九 | 国产精品一区二区三 | 日本欧美大片 | 免费在线看a | 成人欧美 | 成人一级视频在线观看 | 激情亚洲婷婷 | 欧美日韩高清 | 亚洲一级黄色片子 | 欧美日韩视频 | 国产成人aaa | 日韩美女国产精品 | 日韩精品一区二区三区 | 亚洲精品v日韩精品 | 国产99久 | 欧美偷拍综合 | 成人免费毛片嘿嘿连载视频 | 久久久久久国产精品mv | 蜜桃一本色道久久综合亚洲精品冫 | 亚洲视频欧美视频 | 国产精品国产自产拍高清av | 欧美最猛性xxxxx亚洲精品 | 天堂精品一区二区三区 | 国产一区二区播放 | 午夜激情福利电影 | 我和我的祖国电影在线观看免费版高清 | 999精品视频 | 四虎4hu新地址入口2023 | 久草福利视频 | 久一精品 | 精品久久久久久国产 | 久久99国产精品 | 瑟瑟在线观看 | 国产亚洲一区二区三区在线观看 | 久久九九精品久久 | 欧美一级二级视频 | 欧美自拍一区 |