日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知拋物線C:y2=2px(p>0)的準線為l,焦點為F,⊙M的圓心在x軸的正半軸上,且與y軸相切,過原點O作傾斜角為
π3
的直線n,交l于點A,交⊙M于另一點B,且AO=OB=2.
(1)求⊙M和拋物線C的方程;
(2)過l上的動點Q向⊙M作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標.
分析:(1)根據
p
2
=OA•cos60°可求出p的值,從而求出拋物線方程,求出圓心和半徑可求出⊙M的方程;
(2)以點Q為圓心,QS為半徑作⊙Q,則線段ST即為⊙Q與⊙M的公共弦,求出⊙Q的方程,可得ST的方程,從而可求定點坐標.
解答:(1)解:因為
p
2
=OA•cos60°=2×
1
2
=1,即p=2,所以拋物線C的方程為y2=4x
設⊙M的半徑為r,則r=
OB
2
×
1
cos60°
=2
,所以⊙M的方程為(x-2)2+y2=4;
(2)證明:以點Q為圓心,QS為半徑作⊙Q,則線段ST即為⊙Q與⊙M的公共弦
設點Q(-1,t),則QS2=QM2-4=t2+5,
所以⊙Q的方程為(x+1)2+(y-t)2=t2+5
從而直線ST的方程為3x-ty-2=0(*)
因為x=
2
3
,y=0一定是方程(*)的解,所以直線ST恒過一個定點,且該定點坐標為(
2
3
,0).
點評:本題主要考查了圓的方程和拋物線方程,考查直線恒過定點問題,確定ST是⊙Q與⊙M的公共弦是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4且位于x軸上方的點. A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標;
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=2px(p>0),F為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準線l的垂線,垂足為Q.
(1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
(2)設點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標原點.
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點M,不論直線l繞點M如何轉動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0,則k=(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧洲一区在线 | 日韩在线高清视频 | 免费看a| 亚洲精品一区在线观看 | 久草在线 | 日韩在线视频免费观看 | 青青久在线视频 | 日日综合| 一本色道久久加勒比88综合 | 91在线看片 | 亚洲国产精品一区 | 天天干天天爽 | 久草久草久| 亚洲永久免费视频 | 日韩一区二区免费视频 | 中文字幕亚洲在线观看 | 久精品视频 | 草久av| 日韩av在线电影 | 91福利电影在线观看 | 男女视频在线免费观看 | 人人草人人看 | 久久成人免费网站 | 久久男女视频 | 中文字幕乱码一区二区三区 | 中文字幕第一区 | 欧美一级二级三级视频 | 毛片久久久 | 手机看片日韩 | 97爱爱视频 | 日韩视频中文 | www.一区二区三区 | 综合色婷婷 | 欧美激情精品久久久久久 | 性生生活大片免费看视频 | 男女黄色免费网站 | 欧洲国产伦久久久久久久 | 日韩精品av一区二区三区 | 色婷婷亚洲 | 日韩五月| 亚洲欧洲精品一区二区三区 |