如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角
中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點(diǎn)H,CH是否與面ABD垂直。
(1) =
;
(2) CH不可能同時垂直BD和BA,即CH不與面ABD垂直。
解析試題分析:依題意,ABD=90o,建立如圖的坐標(biāo)系使得△ABC在yoz平面上,
△ABD與△ABC成30o的二面角,
DBY=30o,又AB=BD=2,
A(0,0,2),B(0,0,0),C(0,
,1),D(1,
,0),
(1)x軸與面ABC垂直,故(1,0,0)是面ABC的一個法向量。
設(shè)CD與面ABC成的角為,而
= (1,0,-1),
sin
=
=
[0,
],
=
; 6分
(2) 設(shè)=t
= t(1,
,-2)= (t,
t,-2 t),
=
+
=(0,-
,1) +(t,
t,-2 t) = (t,
t-
,-2 t+1),
若,則 (t,
t-
,-2 t+1)·(0,0,2)="0" 得t=
, 10分
此時=(
,-
,0),而
=(1,
,0),
·
=
-
=-1
0,
和
不垂直,即CH不可能同時垂直BD和BA,即CH不與面ABD垂直。12分
考點(diǎn):立體幾何中的平行關(guān)系、垂直關(guān)系,角的計算,空間向量的應(yīng)用。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題利用空間向量,簡化了證明及計算過程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在幾何體中,
平面
,
,
是等腰直角三角形,
,且
,點(diǎn)
是
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.
(I)求二面角B-AF-D的大小;
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角
中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點(diǎn)H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .
(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等腰梯形中,
,
,
,
是
的中點(diǎn).將梯形
繞
旋轉(zhuǎn)
,得到梯形
(如圖).
(1)求證:平面
;
(2)求證:平面
;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大小;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角梯形ABCD中,AD//BC,,
,如圖(1).把
沿
翻折,使得平面
,如圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在線段上是否存在點(diǎn)N,使得
?若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,面為正方形,面
為等腰梯形,
,
,
,
.
(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點(diǎn)
,使
//平面
?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com