分析 根據條件確定圓心和半徑,即可求出圓的標準方程.
解答 解:因為圓心在直線y=2x上,設圓心坐標為(a,2a)
則圓的方程為(x-a)2+(y-2a)2=r2,
圓經過點A(0,-2)且和直線x-y-2=0相切,
所以有 $\left\{\begin{array}{l}{{a}^{2}+(2+2a)^{2}={r}^{2}}\\{\frac{|a-2a-2}{\sqrt{2}}=r}\end{array}\right.$…(6分)
解得:a=-$\frac{2}{3}$,r=$\frac{2\sqrt{2}}{3}$…(10分)
所以圓的方程為(x+$\frac{2}{3}$)2+(y+$\frac{4}{3}$)2=$\frac{8}{9}$…(12分)
點評 本題主要考查圓的標準方程的求解,根據條件確定圓心和半徑是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $(1,\sqrt{2})$ | B. | $(1,\sqrt{3})$ | C. | $(\sqrt{2},2)$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (2,-1,-3) | B. | (-2,1,-3) | C. | (-2,-1,3) | D. | (-2,-1,-3) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 18 | B. | 2 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com