日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求k的值;
(Ⅱ)求四邊形AEBF面積的最大值.
【答案】分析:(1)依題可得橢圓的方程,設直線AB,EF的方程分別為x+2y=2,y=kx,D(x,kx),E(x1,kx1),F(x2,kx2),且x1,x2滿足方程(1+4k2)x2=4,進而求得x2的表達式,進而根據求得x的表達式,由D在AB上知x+2kx=2,進而求得x的另一個表達式,兩個表達式相等求得k.
(Ⅱ)由題設可知|BO|和|AO|的值,設y1=kx1,y2=kx2,進而可表示出四邊形AEBF的面積進而根據基本不等式的性質求得最大值.
解答:解:(Ⅰ)依題設得橢圓的方程為,
直線AB,EF的方程分別為x+2y=2,y=kx(k>0).
如圖,設D(x,kx),E(x1,kx1),F(x2,kx2),其中x1<x2,

且x1,x2滿足方程(1+4k2)x2=4,
.①
知x-x1=6(x2-x),得;
由D在AB上知x+2kx=2,得
所以,
化簡得24k2-25k+6=0,
解得
(Ⅱ)由題設,|BO|=1,|AO|=2.
設y1=kx1,y2=kx2,由①得x2>0,y2=-y1>0,
故四邊形AEBF的面積為S=S△BEF+S△AEF=x2+2y2
===
當x2=2y2時,上式取等號.所以S的最大值為
點評:本題主要考查了直線與圓錐曲線的綜合問題.直線與圓錐曲線的綜合問題是支撐圓錐曲線知識體系的重點內容,問題的解決具有入口寬、方法靈活多樣等,而不同的解題途徑其運算量繁簡差別很大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若
ED
=6
DF
,求k的值;
(Ⅱ)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓中心在坐標原點,焦點在x軸上,一個頂點坐標為(2,0),離心率為
3
2

(1)求這個橢圓的方程;
(2)若這個橢圓左焦點為F1,右焦點為F2,過F1且斜率為1的直線交橢圓于A、B兩點,求△ABF2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓中心在坐標原點,焦點在x軸上,一個頂點為(
2
,0)
,離心率為
2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)若橢圓左焦點為F1,右焦點為F2,過F1且斜率為k的直線交橢圓于A、B,且|
F2A
+
F2B
|=
2
26
3
,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓中心在坐標原點,A(2,O)是它的一個頂點,且長軸是短軸的2倍,
(1)求橢圓的標準方程;
(2)若橢圓的焦點在x軸,設直線y=kx(k>0)與橢圓相交于E、F兩點,求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

設橢圓中心在坐標原點,是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點。

(Ⅰ)若,求的值;

(Ⅱ)求四邊形面積的最大值。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产日韩在线播放 | 国产精品久久久久久久久久东京 | 欧美一级性 | 秋霞一区 | 日韩美女亚洲99久久二区 | 欧美一级淫片免费看 | 欧美日本国产欧美日本韩国99 | 国产成人啪午夜精品网站男同 | 精品亚洲精品 | 精品国产一区二区三区粉芽 | 99爱爱视频| 欧美在线观看一区 | 精品九九 | 日韩免费不卡视频 | 一区二区三区国产精品 | 精品福利在线视频 | 韩国毛片在线 | 自拍偷拍视频网站 | 久久久久亚洲av毛片大全 | 色8久久 | 成人福利av| av网址在线播放 | 日韩精品网| 99精品欧美一区二区三区 | 一区二区三区久久 | 精品av| 成人在线观看亚洲 | 亚洲欧美一区二区三区在线 | 国产成人免费视频网站视频社区 | 欧美激情 在线 | 精品少妇一区二区三区在线播放 | 天天久久婷婷 | 久久久国产一区二区三区 | 亚洲视频中文字幕 | 久久久极品 | 国产免费av在线 | 青青草久草在线 | 久久精品一区二区三区四区 | 精品福利在线视频 | 精品一区国产 | 日韩高清在线一区 |