某商場預計2014年從1月起前個月顧客對某種商品的需求總量
(單位:件)
(1)寫出第個月的需求量
的表達式;
(2)若第個月的銷售量
(單位:件),每件利潤
(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數據:
)
(1) f(x)= .
;(2) .第6個月時最大利潤為3000元
解析試題分析:(1)利用數列求和的遞推思想可得第x個月的需求量.
(2)由(1)可得第x個月的需求量.根據利潤計算公式求得月利潤.利用分段函數的范圍求出各段利潤的最大值.最大值的求解是通過求導的知識.本題屬于應用題的問題,閱讀理解題意要細心.其中涉及求和的問題,有涉及第幾個月的問題,及是數列中的通項與求和關系.另外通過分段的求導在對比出最大值.
試題解析:(1)時,f(x)="p(x)-p(x-1)="
.x=1時p(x)=39也滿足所以f(x)=
.
.
(2)設該商場第x個月的月利潤為w(元).則①且
時.w(x)=
.
.由
.得x=6.所以w(x)在[1,6]上遞增,在[6,7)上遞減.所以
.②
且
時
=1000
.
.所以w(x)在[7,8]上遞增,在(8,12]上遞減.所以
.綜上.第6個月時最大利潤為3000元.
考點:1.數列的通項問題.2.導數求最值問題.3.分段函數問題.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com